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Data transmission exists in almost all the Internet-based applications, while few of them consider the property of nonrepudiation as part
of data security. If a data transmission scheme is performed without the endorsement of a trusted third party (TTP) or a central server, it
is easy to raise disputes while transmitting valuable data, especially digital goods, because a dishonest participant can deny the fact of
particular data transmission instance. +e above problem can be solved by signing and encrypting. However, digital signature schemes
usually assume public key infrastructure (PKI), increasing the burden on certificate management and are not suitable for distributed
networks without TTP such as blockchain. To solve the above problems, we propose two new schemes for nonrepudiation data
transmission based on blockchain (we call it BNRDT): one for short message transmission and the other for large file transmission. In
BNRDTschemes, nonrepudiation evidence of data transmission is generated and stored on the blockchain to satisfy both the properties
of nonrepudiation (including nonrepudiation of origin and nonrepudiation of receipt) and data confidentiality. We implement and test
the schemes on Hyperledger Fabric. +e experimental results show that the proposed schemes can provide appealing performance.

1. Introduction

An overwhelming majority of Internet-based applications
are inseparable from data transmission, may be short
messages, videos, or even confidential government docu-
ments. In most cases (e.g., online chatting and video-on-
demand service), data transmission processes rely on a
trusted third party (TTP) or a central server, which acts as a
data source (or a transmission relay station) and the security
provider. With such a trusted platform, data security in-
cluding confidentiality, integrity, authenticity, and even
nonrepudiation when required are easily implemented.
However, in some specific scenarios, such as P2P (Peer to
Peer) digital goods trading, schemes are in lack of en-
dorsements by trusted platforms; thus, nonrepudiation is no
longer easy to achieve. Concretely, we consider that a digital
goods seller needs to transmit the commodity over the
Internet to an online buyer. Since the data transmission
instance affects the parties’ own interests, thus both the seller
and the buyer want to ensure that the whole process can be

undeniable, if they are honest. In other words, the buyer
cannot deny having received the data so as to refuse to pay
for it, and the seller cannot deny having sent it to the buyer
so as to refuse to refund or be responsible for it if any
problem arises after purchasing.

Nonrepudiation services [1] have been introduced for a
long time to prove the nonrepudiation of user behaviour
including the case of data transmission, which can effectively
solve the above problem. By now, many nonrepudiation
approaches have been proposed, but most of the existing
work on nonrepudiation is still based on trusted third parties
[2–5]. Such TTP-based implementations usually offer higher
efficiency but may suffer from single-point failures. More-
over, a proper TTP is usually not available in distributed
environments. Non-TTP-based nonrepudiation approaches
are traditionally implemented by increasing interactions
between users and gradually releasing secrets [6–8]. How-
ever, this kind of technique always leads to lower execution
efficiency and cannot provide fairness for every participant
equally. Beyond that, with the rapid development of
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blockchain technology and smart contract, some block-
chain-based nonrepudiation schemes have also been pro-
posed [9–12], and they are trying to solve different
nonrepudiation problems such as dispute resolution [9, 12],
nonrepudiation of TLS sessions [10], or program delivery in
industrial IoT (IIoT) environment [11], and almost all work
based on blockchain removes the dependence on TTP, but
none of them have been focused on data transmission
scenario with supporting data confidentiality.

Summarily, although lot of work [2, 4, 5, 11] try to apply
nonrepudiation to data transmission scenarios, but these
work either only consider the simplest case that the data is
transmitted with plaintext, or encrypt the data with a key, but
the key will be published by the TTP, so anybody who obtains
the ciphertext gets the data. While in most applications, we
need to guarantee the confidentiality of the data when
transmitting. So, they are not quite suitable for us to use.

Based on our observation, what function we want to
realize in most cases is that the data can be transmitted in a
secure manner, in which no TTP is required, fairness is
provided equally to any participant, data is transmitted in
ciphertext that only desired recipient can get it, and all
behaviours throughout the process of data transmission
cannot be denied. In order to realize our goal and make our
work more adaptable, we give two data transmission
schemes based on the characteristics of blockchain. In the
first one, a short message can be transmitted securely and
undeniably, which does not require TTP, provides fairness
equally to any participant, and every behaviour is undeni-
able. While in the other scheme, which is an extended
version of the first one, we can transmit large files unde-
niably with supporting the same properties.

Similar to the previous work in the research of non-
repudiation property, we consider the following non-
repudiation types [1, 4, 10, 13] in our data transmission
schemes:

(i) Nonrepudiation of Origin (NRO): it provides evi-
dence that the transmission data is originated from
the specified sender

(ii) Nonrepudiation of Receipt (NRR): it provides evi-
dence that the recipient has received the correct
transmission data

Note that we focus on the malicious cases that the
participants deny having done something. +erefore, the
NRO evidence is generated for the recipient to prove the
behaviour of the sender, and the NRR evidence is generated
for the sender to prove the behaviour of the recipient. +e
NRO and NRR evidence should always appear in pairs to
guarantee the fairness of generating nonrepudiation
evidence.

+e remainder of this paper is organized as follows.
Section 2 introduces the related work and our contributions
to better describe the improvement of our schemes over the
existing ones. Section 3 introduces some preliminaries in-
cluding the security model. +en, we give the detailed
construction of the nonrepudiation data transmission
schemes for short message transmission and large file

transmission in Section 4 and Section 5, respectively. In
Section 6, we perform the security analysis of the schemes
and evaluate them in Section 7. Finally, we summarize this
paper in Section 8.

2. Related Work and Our Contributions

2.1. Related Work

2.1.1. Traditional Nonrepudiation Approaches.
Nonrepudiation protocols, being as a solution to the
problem of accountability in the distributed communication
environment, has gained a lot of attention. As mentioned
above, most of existing nonrepudiation solutions rely on
TTP to generate and judge the evidence [2–5]. Zhou and
Gollman [4] proposed a fair nonrepudiation protocol in
1996, in which a TTP is introduced as a middleman to
distribute the key used to encode the message. Once the
recipient confirms the receipt of the ciphertext, the TTP will
reveal the key (submitted by the sender) to the public to
make sure that the recipient can recover the original mes-
sage. In order to solve the efficiency problem caused by the
high participation of TTP in [4], Zhou and Gollman [5]
proposed a more efficient scheme in which TTP is involved
only when one of the parties could not obtain the non-
repudiation evidence of the other party. In this case, the
involved TTP is regarded as an offline TTP [14]. +e pro-
tocols above are efficient in exchanging messages undeniably
with the participation of TTP, but they cannot ensure data
privacy if there is no secure channel to transmit the data
because the key is later public to everyone. Aiming at
extending nonrepudiation to multiparty scenario, Kremer
and Markowitch [2] proposed a multiparty nonrepudiation
protocol, but it still relies on TTP, while as we all know that a
proper TTP is not always available.

A typical way to achieve nonrepudiation without in-
troducing TTP is to increase the interactions and release the
secrets gradually [7, 8]. More precisely, Markowitch and
Roggeman [7] proposed a nonrepudiation protocol by
randomly sending a true or fake decryption key to the re-
cipient after the recipient has confirmed receiving the ci-
phertext. And the recipient is demanded to return the receipt
of the key in every iteration within a time interval of δ, which
is much shorter than the decryption time. Once the recipient
misbehaves, the sender will terminate the protocol. In such a
scheme, the recipient will have a nonnegligible advantage to
obtain the true key when receiving a key if he refuses to
respond to the sender. Mitsianis [8] realized the same goal by
cutting the decryption key into fragments, and the sender
sends a fragment to the recipient in each iteration. Similar to
Markowitch’s approach, the recipient still has an advantage.
Furthermore, all these non-TTP approaches get lower
efficiency.

In addition to the problem of relying on TTP and low
efficiency, the existing traditional nonrepudiation solutions
still have an unsolvable problem, that is, the storage of the
evidence is accomplished by the participants themselves or
the TTP. Considering the constraint of storage space,
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business migration, or human error, these records of evi-
dence are generally not permanent. Once the record dis-
appears, there will be hidden trouble in accountability.

2.1.2. Blockchain and Relevant Nonrepudiation Approaches.
Blockchain technology emerged as the low-level technology
of the Bitcoin cryptocurrency system [15], which is actually a
decentralized digital ledger. Each node in the blockchain
system maintains an identical backup of the whole ledger (a
node only saves part of the ledger in shared blockchains, e.g.,
[16]), and the consistency of the ledger on these nodes is
ensured through a consensus protocol [15, 17]. +e
mechanism of the blockchain ensures that the data is im-
mutable once been written into the blockchain, since the
attacker has to pay dearly to control more than half of the
blockchain nodes to temper with the ledger. To implement
rather complex functions over the blockchain and even
realize decentralized applications, smart contract [18] is
supported by many blockchain platforms (e.g., Ethereum
[19] and Hyperledger Fabric [20]). In Ethereum, smart
contracts are written in Solidity [21], while in Hyperledger
Fabric, smart contracts support many traditional pro-
gramming languages such as golang [22] and nodejs [23],
and thus much more richly functional interfaces are sup-
ported in Fabric.

Besides its wide application in cryptocurrency systems,
there are two main strands of the nonfinancial application of
blockchain technology. One is to use blockchain to store
data (e.g., Merkle Tree [24] root) for later verification
[25, 26], and the other is to exploit Bitcoin scripts or smart
contracts to realize specific functions such as replacing TTP
[10, 27, 28] or notarizing integrity of data [29]. Schemes or
protocols that consider nonrepudiation with the help of
blockchain have been proposed recently (e.g., [9–12]).
Hubert et al. [10] proposed an extension of TLS protocol
called TLS-N to provide each TLS session with the non-
repudiation evidence. TLS-N defines nonrepudiation of a
TLS session and the protocol generates nonrepudiation
evidence by a generator, which usually refers to a web server
with an authorized TLS certificate. +e evidence is signed
and can be verified by any third party through public key
infrastructure (PKI). TLS-N adopts Ethereum blockchain to
replace the third parties to verify the nonrepudiation evi-
dence. Schemes proposed in [9, 12] are mainly used for
dispute resolution in distributed environments. Both of
them exploit smart contracts to process and record the
actions of the participants as nonrepudiation evidence, but
they do not design enforcement mechanisms to force the
participants to confirm their receipts, which is not quite
practical to apply.

More recently, Xu et al. [11] proposed a blockchain-
based nonrepudiation network computing service scheme
for industrial IoT (IIoT) scenario. +e scheme solved the
nonrepudiation problem of delivering an executable service
program from service providers to IIoT clients, in which the
blockchain is used as an evidence recorder and a service
publication proxy. +ey realized this by cutting a service
program into a small nonexecutable header and the rest part

and then delivering them via on-chain and off-chain
channels, respectively. +e smart contract will force the
service provider and the client to interact step by step with
some token; any dispute can be resolved through a ho-
momorphic hash-based mechanism [30]. However, in this
approach, the delivered programs are not encrypted so that
data confidentiality is not supported. Moreover, since the
service provider publishes the header part of every service
program to the blockchain when delivering them in their
scheme, if another IIoT client asks for delivering the same
program, the client can obtain the header part directly from
the blockchain rather than waiting for the provider to
publish. In this case, the client will have an advantage.

Summarily, although there are numerous nonrepudiation
supported protocols or schemes, we still cannot find a suitable
solution for transmitting some data from a sender to a re-
cipient while supporting nonrepudiation, fairness, data
confidentiality, and tolerance of malicious cases at the same
time. +erefore, we urgently need such a non-TTP-based
nonrepudiation solution for distributed environments.

2.2. Our Contributions

2.2.1. Nonrepudiation Data Transmission Schemes for Both
Short Message and Large File. We put forward the con-
struction on secure data transmission problems with non-
repudiation property. To avoid introducing TTP, we exploit
blockchain technology to verify the behaviours of partici-
pants and promote the execution of the scheme. So, we call
our scheme as Blockchain-based Nonrepudiation Data
Transmission (BNRDT) scheme. To fit more scenarios and
the feature of the blockchain technology, we propose two
BNRDT schemes, the original one is for short message
transmission (data size less than 1KB) with fewer interac-
tions, and the other improved one is for large file trans-
mission (data with MB or GB level size). We can choose any
scheme according to the environment when transmitting
mid-size data. Both the schemes provide nonrepudiation of
data transmission process with fair nonrepudiation evidence
generation. Meanwhile, the two BNRDT schemes can pro-
tect the confidentiality and integrity of the transmitted data
and handle all the possible malicious cases.

2.2.2. Security Properties and 5eoretical Analysis for Secure
Nonrepudiation Data Transmission. We put forward the
desired properties of a nonrepudiation secure data trans-
mission scheme to analyze the security of our schemes. In
detail, we combine all the necessary security properties we
want from both the data transmission and nonrepudiation,
including data security, requirement to resistant to mali-
cious cases, nonrepudiation of both the sender and the
recipient, and the fairness of nonrepudiation evidence
generation. Based on this, we give a detailed security analysis
of our schemes.

2.2.3. Prototype Implementation Based on Hyperledger
Fabric. We give a prototype implementation of our non-
repudiation data transmission schemes based on
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Hyperledger Fabric blockchain. Furthermore, we evaluate
the implementation and prove the applicability of the
proposed schemes.

3. Preliminaries

In this section, we will introduce some preliminaries in-
cluding the security model to better describe and analyze the
schemes in later sections.

3.1. Notations. +e main notations used in this paper are
shown in Table 1. Note that IDS and IDR represent for the
blockchain account identifiers of the sender S and the re-
cipient R. For example, the identifier of a user can be
derived from his certificate in Fabric blockchain. +e
identifier can uniquely identify the user in the blockchain
network.

3.2. Cryptographic Building Blocks

3.2.1. Hash Function. Hash function is used to compress an
arbitrary length input string into short and fixed-length
string output. An unkeyed hash function can be written asH:
0, 1{ }∗ ⟶ 0, 1{ }l. We simply denote the hash calculation of
a message M as h=Hash(M).

We say that a hash function is collision resistant, that is,
colliding pairs are unknown and computationally infeasible
for a probabilistic polynomial-time (PPT) adversary to find
even though they exist [31]. Besides, if a hash function is
modelled as a random oracle, this hash function is collision
resistant, and any PPT adversary is infeasible to obtain any
information about the message M through the hash value h
of M.

3.2.2. Commitment Scheme. Take the discrete-log problem-
based implementation (e.g., the Pedersen commitment [32])
as an example, a commitment scheme is a tuple of PPT
algorithms (ComGen, Com, and Open) executed between
two parties: a committer and a recipient. +e algorithm
ComGen is used for group parameter generation, which will
be used for calculating the commitment, and we denote it as
pp←ComGen(1λ). For an arbitrary input x ∈ {0, 1}∗ as the
secret to commit, the algorithm Com requires another
randomly generated parameter r and the generated pa-
rameter pp to produce an commitment comx, which can be
denoted as comx←Com(pp, x, r). +e algorithm Open takes
as input the generated parameter, the commitment comx, the
original secret x, and the randomness r and outputs 1 if
comx=Com(pp, x, r) and 0 otherwise, which can be denoted
as {0, 1}←Open(pp, comx, x, r).

+e commitment scheme have to satisfy two properties
including hiding and binding, where hiding means that any
PPT adversary cannot obtain any information about x from
comx before the corresponding Open is executed. And
bindingmeans that a specific commitment comx can only be
opened with the original secret x, it is impossible for the
committer to open with any other secret x′ ≠ x [27].

Classically, only algorithm ComGen is executed by the
recipient and both Com and Open of a commitment in-
stance are executed by the committer. While, in this paper,
we redesign and implement the commitment scheme based
on the blockchain and the smart contract. We let the re-
cipient execute the opening operation in order to confirm
that he has received the secret. Besides, both the committer
and the recipient will interact with the smart contract rather
than each other. For implementation details, we refer the
reader to the Section 3.2.3.

3.2.3. Encryption Schemes. Both the symmetric and asym-
metric encryption schemes are introduced here.

A symmetric encryption scheme is a tuple of PPT al-
gorithms (SymGen, SymEnc, and SymDec) such that
SymGen takes as input a security parameter λ and outputs a
key k, which can be written as k⟵ SymGen(1λ). SymEnc
takes as input a key k and an arbitrary plaintext M and then
outputs the ciphertext C, which can be written as
C⟵ SymEnc(k, M). And SymDec takes as input a key and
the ciphertext C and then outputs the original plaintextM or
⊥. Specifically, when C is the correct ciphertext ofM under k,
we have M⟵ SymDec(k, C) or ⊥⟵ SymDec(k, C),
otherwise.

We say that the symmetric encryption scheme has in-
distinguishable encryptions under a chosen-ciphertext at-
tack, i.e., the scheme is IND-CCA (Indistinguishability
Chosen-Ciphertext Attack) secure if for any PPT adversary
who chooses a pair of messages M0 and M1 is given the
challenge ciphertext SymEnc (Mb), where b is chosen uni-
formly at random, and oracle access to SymEnc(k, ·) and
SymDec(k, ·) with the limitation that the challenged ci-
phertext is not allowed; the advantage for the adversary to
output a guess bit b′ such that the probability of b′ = b is not
significantly better than random guessing (with the prob-
ability of 1/2).

Table 1: Notations used in this paper.

Notation Meaning
S Sender of the message or file
R Recipient of the message or file
SC +e smart contract deployed on the blockchain
IDS, IDR Blockchain account identifiers of S and R

pk temp,
sktemp

Temporary key pair for asymmetric encryption

M +e short message that needs to be undeniably
transmitted

F +e large file that needs to be undeniably
transmitted

K +e randomly generated key for symmetric
encryption

C or Cx
Ciphertext obtained by symmetric or asymmetric

encryption
h or hx Hash values
comx Commitment value of secret x
dR +e deposit paid by the participant R
L A unique label that identifies a BNRDT instance
sL +e state of protocol instance labelled with L
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Similar to the above definitions, we define and denote the
three PPT algorithms of asymmetric encryption scheme for
key generation, encryption, and decryption as (pk, sk)←
AsymGen (1λ), C←AsymEnc (pk, M), and M←AsymDec
(sk, C) (or ⊥←AsymDec (sk, C)), respectively. +e ci-
phertext encrypted under a public key pk can only be
decrypted if one knows the corresponding private key sk.

We also define the security of asymmetric encryption
schemes.We say that the asymmetric encryption scheme has
indistinguishable encryptions under a chosen-ciphertext
attack, i.e., the scheme is IND-CCA secure if for any PPT
adversary who chooses a pair of messages M0 and M1 is
given the challenge ciphertext AsymEnc (Mb), where b is
chosen uniformly at random, and oracle access to Asym-
Dec(sk, ·) with the limitation that the challenged ciphertext is
not allowed; the advantage for the adversary to output a
guess bit b′ such that the probability of b′ = b is not sig-
nificantly better than random guessing (with the probability
of 1/2). When the oracle access is allowed after the adversary
gets the challenge ciphertext, the scheme is said to be IND-
CCA2 secure with the same output.

3.3. Security Model. Before introducing the construction of
our scheme, we present the security properties that we want
to achieve and the reasonable trust assumptions here.

3.3.1. Security Properties. To formally describe the security
of the scheme, we first give the security objectives we want a
nonrepudiation data transmission scheme to achieve.

First, the scheme should provide sufficient data security
and transmission fairness, as described in P1 and P2 below:

(i) Property P1 (data confidentiality): when the non-
repudiation data transmission scheme ends nor-
mally rather than being interrupted by any malicious
behaviour, any adversary cannot recover the original
data through the parameters revealed during the
data transmission process.

(ii) Property P2 (fairness of data transmission): when
there is a malicious sender or a malicious receiver
during data transmission, the scheme guarantees
that the malicious participant cannot obtain any
advantage over the other participant through per-
forming malicious behaviours.

Furthermore, as a nonrepudiation scheme, the non-
repudiation properties described by P3 and P4 below are
required:

(i) Property P3 (nonrepudiation of data transmission):
once the scheme ends normally rather than being
interrupted by any malicious behaviour, the sender
cannot deny that he has sent the data to the receiver
(NRO), and the receiver cannot deny that he has
received the data from the sender (NRR).

(ii) Property P4 (fairness of nonrepudiation evidence
generation): the nonrepudiation evidence always
appears in pairs. For a specific data transmission
instance, either all the participants receive the

evidence of the other party’s behaviour or none of
the participants get any valid evidence.

3.3.2. Security Definition. Now, we give the security defi-
nition of a nonrepudiation data transmission scheme.

Definition 1. If a nonrepudiation data transmission scheme
satisfies properties P1, P2, P3, and P4 at the same time, we say
that the scheme is a secure nonrepudiation data transmis-
sion scheme.

3.3.3. Trust Assumptions. We also give some trust as-
sumptions which are necessary. First, we assume that both
the sender and the recipient of a data transmission instance
are possible to cheat the other party due to their self-in-
terests, but neither of them will perform abnormal behav-
iours that are detrimental to their own interests, such as
revealing their own private key to the adversary. Second, we
assume that the blockchain (including the smart contract) is
a trusted component. Once the transaction is confirmed by
enough nodes, the data on the blockchain is trusted and
immutable. For the smart contract, the adversary cannot
modify its internally deployed algorithms. We think the last
assumption is also reasonable because adversaries have to
pay a great price to modify the historical data on the
blockchain. In addition, we point out that data on the
blockchain will be open to all scheme participants, so there
will be no secrets on the blockchain.

4. Construction of BNRDT Scheme

In this section, we will introduce the construction of the
original BNRDT scheme for short message transmission.
Regularly, the BNRDT scheme involves three parties in-
cluding a sender S, a recipient R, and a dedicated smart
contract SC designed by us. Assume that S needs to
transmit a short message m to R. At the beginning of the
scheme, a recipient R initiates a data transmission instance
by launching a blockchain transaction to SC with his de-
posit, then S sends a transaction to SC with a commitment
of the message encrypted by a temporary public key pro-
vided byR, and later the recipient sends his confirmation by
opening the commitment to withdraw his deposit. With the
help of SC, the whole data transmission process is unde-
niably recorded in the blockchain ledger.

Our BNRDT scheme requires that the recipient submits
the deposit in the first message of an instance, which ensures
the smart contract to force the recipient to open the com-
mitment submitted by the sender, thus to get the deposit
back. If the recipient misbehaves, he will never get back the
deposit. On the contrary, if the sender misbehaves, we
guarantee that the deposit will be returned to the recipient in
the last phase of the scheme.

Now, we outline how we use the smart contract and the
mentioned cryptographic building blocks to undeniably
transmit a short message fromS toR. We will introduce the
initialization of the scheme firstly and then describe the
phases in detail.
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4.1. BNRDT Scheme Initialization. While initializing the
scheme, our smart contract SC is deployed to the block-
chain, which is independent of any scheme instances and
needs to be executed only once. After finishing deployment,
the address of the smart contract and the algorithms are
revealed to the public. +en, the scheme can be executed
multiple times. +e deployed smart contract includes 6 al-
gorithms, each algorithm can be triggered with its algorithm
identifier (its name) and the necessary parameters in ap-
propriate phases:

(i) TransRequest (L, IDS, IDR, pktemp, pp): this algo-
rithm handles the data transmission request coming
from any invoker and initiates a new BNRDT in-
stance. +e parameter L identifies the instance, and
IDS and IDR represent the blockchain account ID
of the sender S and the recipient R, respectively.
pktemp is a temporary asymmetric public key that
will be used for asymmetric encryption, and pp
represents the parameter which will be used by
commitment scheme.

(ii) PubComm (L, com, C): this algorithm publishes the
invoker’s commitment com for some secret. And C
represents the ciphertext that the committer wants
to publish to the public with the commitment,
which can be used by the commitment opener to
recover the secret. +e first parameter L binds this
transaction with a specific data transmission
instance.

(iii) OpenComm (L, com, x, r): this algorithm checks the
commitment com with respect to the secret x and
the randomness r. Similarly, the first parameter L
binds this transaction with a specific data trans-
mission instance. +is algorithm has two possible
execution results which will lead the scheme to
different directions. If x and r succeed in opening
the commitment com, the scheme ends normally;
otherwise the scheme gets into the dispute resolving
phase.

(iv) Complain (L, sktemp): this algorithm handles the
complain requests to resolve disputes arose when
opening commitments. In order to trigger this al-
gorithm, the invoker has to provide the label L and
the temporary asymmetric private key sktemp, which
is to decrypt the published ciphertext when in-
voking PubComm.

(v) Terminate (L): this algorithm is designed for the
honest parties to terminate the scheme instance
labelled with L in the cases that the other participant
refuses to make responses in the previous phase.

(vi) QueryState (L): this algorithm handles the query
requests coming from any invoker to check the
current state of any existing BNRDT instances. It
will return the state of the instance labelled with L.

Also note that there is a publicly available blacklist
maintained by the smart contract, which records all the
blockchain identity IDs of the malicious participants of any

BNRDT instance. Any participant with its ID in the blacklist
is no longer allowed to use the scheme in the future. +is
blacklist can also provide a reference for the honesty of the
blockchain IDs for other blockchain applications.

4.2. Phases of BNRDT Scheme. +e detailed workflow of the
BNRDTscheme is shown in Figure 1. Usually, a BNRDTdata
transmission instance will only include the first three phases:
Data Transmission Request, Publish Commitment, and Open
Commitment. Only when there is malicious behaviour, the
scheme is possible to enter phase Complain. We point out
that the algorithm Terminate is also a solution to simple
malicious cases to abort the execution, but we do not show it
in the figure. In order to distinguish different BNRDT data
transmission instances, we label every instance with a unique
random number L. And for each instance labelled with L, the
smart contract holds a state variable sL to indicate the current
state of the execution. Besides, we point out that when S

checks the parameters, it means S checks the number and
correctness of the parameters, rather than checking the
internal formats. Now, we give a detailed description of these
phases.

4.2.1. Phase 1: Data Transmission Request

(a) R: in this phase, the recipient R runs RandomGen
(1λ) to obtain a unique label L to identify this data
transmission instance, runs ComGen (1λ) to gen-
erate a commitment scheme parameter pp, runs
AsymGen (1λ) to generate a temporary asymmetric
encryption key pair (pktemp, sktemp), and initiates a
blockchain transaction to send the following mes-
sages: the algorithm identifier of TransRequest which
is waiting to be executed by SC, a tuple (L, IDS,
IDR, pktemp, pp), which is necessary for SC to run
the algorithm, and some blockchain currency dR
chosen by R as a deposit to open the commitment.

(b) SC: upon receiving the tuple TransRequest (L, IDS,
IDR, pktemp, pp, dR) from any invoker, SC first
ensures that the invoker has paid the deposit and
then executes TransRequest (L, IDS, IDR, pktemp, pp)
to process the BNRDT data transmission request.
Inside the algorithm, SC makes sure that the in-
voker is IDR and then checks the label L and the IDs,
and if L already labelled any other instance or any of
the IDs is in the blacklist, SC will reject the request.
Otherwise, SC initiates a BNRDT instance, stores
these parameters, and sets the state of the instance as
sL← requested.

4.2.2. Phase 2: Publish Commitment

(a) S: once the sender S in the listening state sees the
transaction to SC contains his account identifier
(IDS) and the state sL is set to requested, he is ready
to transmit themessagem to the requesterR. Firstly,
S obtains the request parameters from the
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blockchain and calculates the hash of the message
appended by the label, which is h←Hash(m‖L).
+en, S runs the algorithm r←RandomGen(1λ) to
generate a random value and calculate the com-
mitment of the hash value h with the obtained pa-
rameter pp, which can be denoted as
comh←Com(pp, h, r). After that, S uses R’s
temporary public key pktemp to asymmetrically en-
crypt the original message and the randomness r and
generates the ciphertext C←AsymEnc(pktemp, m‖r).
Finally, S initiates a blockchain transaction to send
the following parameters to SC: the algorithm
identifier PubComm and the tuple (L, comh, C),
which is necessary for S to run PubComm.

(b) R: if S does not send the blockchain transaction to
respond to the data transmission request in phase 1,
R can choose to continue waiting for the response of
committing, or to initiate a terminate transaction by
sending the tuple (Terminate, L) toS. In this way,R
can terminate the protocol and redeem his deposit
dR back immediately.

(c) SC: upon receiving a committing tuple (PubComm,
(L, comh, C)) from an invoker whose account
identifier is IDS, S executes PubComm(L, comh, C)
to check the state variable sL, and S rejects the
transaction if sL ≠ requested.Otherwise,S stores the
parameters and sets sL⟵ committed.

Upon receiving a tuple (Terminate, L) from an in-
voker whose account identifier is IDR, SC runs
Terminate(L) to check the state variable sL and re-
jects the terminating request if sL ≠ requested.

Otherwise, S sets sL← terminated, returns dR back
to R, and terminates the instance.

4.2.3. Phase 3: Open Commitment

(a) R: the recipient R in the listening state can now
obtain the ciphertextC from the blockchain.+us,R
runs AsymDec (sktemp, C) to decrypt the ciphertext
C, recover m′

�����, and then R obtains the original
message m′. Next, R also calculates hash h′←Hash
(m′

�����L) to get the secret value. If the AsymDec al-
gorithm output ⊥,R can set an arbitrary string as h′.
Now, R initiates a blockchain transaction with the
tuple (OpenComm, (L, comh, h′, r′)) to SC. In this
way, R opens the commitment comh and redeems
his deposit dR back if the obtained secret is correct.

(b) SC: upon receiving a tuple (OpenComm, (L, comh, h′,
r′)) from an invoker whose account identifier is IDR,
SC runs OpenComm(L, comh, h′, r′). Concretely, S
checks the state variable sL and rejects the request if
sL ≠ committed. If the state check passes, SC exe-
cutes Open(pp, comh, h′, r′). If the output is 0,SC sets
sL←misbehaved and stores h′ and r′ which will help
SC judge whether the sender or the recipient has
misbehaved. Otherwise, SC stores h′ and r′, sets
sL← finished, and returns dR back toR. In this case,
the scheme ends normally.

4.2.4. Phase 4: Complain

(a) R: the recipient R can initiate a blockchain
transaction with the tuple (Complain, (L, sktemp)) to

Figure 1: Workflow of the original BNRDT scheme for short message transmission.
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SC in this phase. By uploading his temporary pri-
vate key sktemp, R can appeal against the decision
SCmade in the previous phase (Phase 3) and finally
get his deposit back.

(b) SC: upon receiving the tuple (Complain, (L, sktemp))
from an invoker whose account identifier is IDR,
SC executes Complain (L, sktemp) to process the
complain request. Concretely, SC checks the state
variable sL and rejects the request if sL ≠ misbehaved.
If the state check passes, SC continues to check and
judge R to be malicious as long as one of the fol-
lowing statements is positive:

(i) +e uploaded sktemp is not the corresponding
private key of sktemp.

(ii) ⊥←AsymDec (sktemp, C).
(iii) m″

�����r″←AsymDec (sktemp, C),
h″←Hash (m″

����L), but h″ ≠ h′ or r ″ ≠ r′, in
which h′ and r′ are uploaded and stored in
Phase 3.

In contrast, if all the above statements are negative,
which means SC succeeded in decrypting C with
sktemp and the outputs match with the uploaded
parameters by R, SC judges SC to be malicious.
If S is judged to be malicious, SC returns dR to R

and adds IDS to the blacklist. Otherwise, if R is
judged to be malicious, S returns dR to S and adds
IDR to the blacklist. Finally,SC sets sL = terminated
and terminates the protocol.

4.3. Further Discussion. We now examine some crucial
details of the above BNRDTscheme. First of all, we point out
the reason why the recipient is required to generate a
temporary public/private key pair rather than using its long-
term key pair. +e generated key pair is used for asymmetric
encryption to protect the message from being obtained by
any other third party. +ere is no problem using the re-
cipient’s key pair when both the participants are honest.
However, if a malicious sender publishes a commitment
comh which is not corresponding commitment to the hash
of the ciphertext C, which means the honest recipient will
never manage to find the secret (hash value of m‖L) to open
the comh through decrypting C. In this case, we need the
smart contract to reproduce the calculation process of an
honest recipient to prove his innocence.+erefore, the smart
contract needs the private key. And the disclosure of a
temporary generated private key will not affect the security
of the recipient’s account or some other information.

We would also like to explain why we take the hash value
of the message m appended with the random label L as the
secret of the commitment. Note that one of the goals we
want to achieve is to make the data transmission process
undeniable, including making sure that the recipient has
received the right message. However, we also need to
consider the presence of malicious senders; thus, the re-
cipient actively confirms receiving themessage will be a good
choice. +erefore, we ask the recipient to calculate and
publish the hash value of the original message with the label;

by this way, we make sure that the recipient has received the
correct message and the confidentiality of the original data
will not be affected. Meanwhile, the smart contract needs to
know whether the opened hash is the right one, so we take it
as the secret of the commitment, and let the smart contract
execute the Open algorithm. +e label L is appended to the
message when calculating hash as a salt value as well as to
bind the message with the instance label, which also ensures
that one hash value will not be recorded in the blockchain
twice or more times.

Besides, we point out that the algorithm QueryState in-
tegrated in the smart contract is designed for state checking.
Only when the current state sL of a BNRDTdata transmission
instance labelled with L is set to finished, it means the data
transmission process ended normally rather than being
interrupted by any malicious behaviour, and the non-
repudiation evidence (including NRO and NRR) of this data
transmission process is generated and stored in the block-
chain. And the state of the instance will be one of the most
important evidence to resolve disputes and judge the validity
of the nonrepudiation evidence. We refer the readers to
Section 6 for more detailed analysis and proof of the scheme.

Although the proposed BNRDT scheme can securely
transmit the message between two blockchain users with the
support of nonrepudiation property (we prove it in Section 6), it
is not a perfect solution for data transmission since the message
is directly encrypted by an asymmetric key and transmitted over
the blockchain, while everyone knows that asymmetric en-
cryption is not suitable for large files, and the blockchain is not
suitable for transmission of large files either. +erefore, we
present another version of BNRDTin Section 5 to deal with this
problem, which supports large file transmission.

5. An Improved Version of BNRDT Scheme
Supporting Large File Transmission

As mentioned before, the proposed BNRDT scheme is
qualified for short message transmission but not suitable for
large files, mainly because the message is directly encrypted
by an asymmetric key and the message is transmitted on-
chain. In order to support large file transmission, in this
section, we give an improved version of the original BNRDT
scheme which uses symmetric encryption scheme to encrypt
data and transmits data through an off-chain channel.

In order to transmit and protect a large file, we can use an
efficient symmetric encryption scheme (e.g., AES) to encrypt
the file under a randomly generated symmetric key k, and
since the original BNRDT is qualified for secure short
messages transmission, we can use it to distribute k unde-
niably. Note that the symmetrically encrypted ciphertext
needs to be transmitted and confirmed before key distri-
bution so that the smart contract can judge the malicious
behaviours when sending and confirming ciphertext. Now,
we describe the implementation detail of the scheme.

5.1. Construction. +e detailed workflow of the improved
BNRDTscheme is shown in Figure 2. Similar to the original
BNRDT, every nonrepudiation data transmission instance
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requires to be labelled with a unique random identifier L. To
improve the efficiency of data encryption, we apply sym-
metric encryption in phase 2. +erefore, our goal is to
transmit both the symmetric encryption key and the ci-
phertext undeniably. As you can see in Figure 2, phases 1, 4,
5, and 6 constitute a complete data transmission instance of
the original BRNDTscheme, which transmits the symmetric
encryption key k randomly generated in phase 2. What we
still need to do is to transmit the ciphertext of the original
data through an off-chain channel. To achieve this goal, we
introduce the other two phases (Phase 2 and 3).

In phase 2, the symmetric encryption key k is generated
and being used to encrypt the original data, which is
Cf← SymEnc (k, f ). Similar to the commit-open process of
transmitting k, we also calculate hash on ciphertext Cf and
the label. +en, we take this hash value as the secret to
commit in the commitment. +erefore, S is required to
select a randomness r1 and execute comhcf←Com(pp, hCf,
r1). After that, S exploits the obtained temporary public key
sktemp to encrypt the randomness r1. Finally, S reveals the

parameters to S through a blockchain transaction to trigger
the PubComm algorithm.

In phase 3, S sends the ciphertext Cf to R through an
arbitrary off-chain channel rather than transmitting through
the blockchain, thus to support large file transmission. Also,
the recipient is required to open the commitment comhcf by
initiating the OpenComm transaction with the obtained and
calculated parameters hcf

′ and the randomness r1′. +erefore,
R makes everyone know that he has successfully received
the right ciphertext. Upon receiving the transaction, S

executes OpenComm(L, comhcf, hcf
′ , r1′) to verify whether

the opened secret is the committed one or not, as shown in
the figure. Here, in phase 3, the way that S handles the
verification result is different from that in phase 5 (as well as
phase 3 in the original BNRDT scheme). +at is, if Open-
Comm (L, comhcf, hcf

′ , r1′) = 1, everything goes right and the
scheme proceeds. Otherwise, S will directly terminate the
scheme and return the deposit dR toR, since there must be
something malicious or unexpected happened. It may be
that S sent the wrong ciphertext, or CR intentionally

Figure 2: +e improved BNRDT scheme for large file transmission.
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uploaded the wrong commitment secret, or even the ci-
phertext was changed when being transmitting off the chain.
However, SC cannot judge what indeed happened since no
one knows what the R has received indeed. +erefore, the
best choice is to terminate the data transmission instance
and no one suffers a loss.

Finally, if hk
′ and r2′ successfully opens the commitment

about the key, R runs f← SymDec (k′, Cf
′) to get the

original transmission data. See Section 6, for security
analysis and nonrepudiation proof of this scheme.

6. Security Analysis

In this section, we give the detailed security analysis of our
BNRDT schemes based on the security properties described
in the security model. To prove that our schemes satisfy
Definition 1, we give the following theorem.

Theorem 1. If the hash function is modelled as a random
oracle, the asymmetric and symmetric encryption schemes
provide IND-CCA2 security, the commitment scheme pro-
vides secure hiding and binding properties, and the blockchain
as well as the smart contract is trusted and immutable, and
the proposed BNRDT schemes are secure data transmission
schemes.

Proof. We begin our proof by considering five types of
attacks:

(1) A malicious outsider attempts to obtain the trans-
mission data through the published parameters of a
BNRDT instance, while both the scheme participants
are honest (Lemma 1)

(2) A malicious participant of any BNRDT scheme at-
tempts to cheat the other side by performing mali-
cious behaviours (Lemma 2)

(3) A malicious sender attempts to deny the fact that he
has sent the data to the recipient through any
BNRDT scheme (Lemma 3)

(4) A malicious recipient attempts to deny the fact that
he has received the data from the sender through any
BNRDT scheme (Lemma 4)

(5) A malicious participant of any BNRDT scheme at-
tempts to generate nonrepudiation evidence for
himself while also prevent the other one to generate
it (Lemma 5)

We start with Lemma 1.

Lemma 1. 5e data transmitted through BNRDT schemes is
confidential against any probabilistic polynomial-time (PPT)
adversary A if the hash function integrated in BNRDT is
modelled as a random oracle, and the encryption schemes
provide IND-CCA2 security.

Proof. In our original BNRDT scheme for short message
transmission, when scheme ends normally, that is, when the
scheme ends after phase 3 and the state variable sL is set to
finished, the revealed public parameters include the

blockchain IDs of the participants, the temporary generated
public key, the random label L, the hash value h of the
original message appended with the label, the commitment
scheme parameter pp, the randomness r, the commitment
value comh, and the asymmetrically encrypted ciphertext C
of the message appended with the randomness. Parameters
that may be useful to the adversary to recover the original
data includes the public key pktemp, the ciphertext C, and the
hash value h.

Since the asymmetric encryption scheme provides IND-
CCA2 security, any PPT adversary A cannot obtain any
information about m through C and pktemp. Besides, since
the hash function is modelled as a random oracle, A is
impossible to get any information about the original mes-
sage from the hash value h, either. Furthermore, since the
randomly generated label L is appended to the original
message when calculating hash, it is impossible to find two
BNRDT instances that reveal the same hash values or
commitment values, which further hides the original
message.

In our improved BNRDT scheme for large file trans-
mission, we exploit the original scheme to transmit the
symmetric encryption key, and we use an off-chain channel
to transmit the ciphertext of symmetric encryption. In this
case, two more parameters including the symmetric en-
cryption ciphertext and its hash value are revealed to the
adversary. However, with the assumption of IND-CCA2
security of symmetric encryption scheme and random oracle
of the hash function, the adversary still cannot obtain any
information about the original data. With the above analysis
of the original BNRDT scheme, the adversary is also im-
possible to obtain the symmetric encryption key. +erefore,
the adversary can neither recover the original data through
the symmetric encryption ciphertext nor obtain the key to
decrypt the ciphertext.

To conclude the proof of Lemma 1, our schemes
guarantee that the transmission data is confidential against
any PPT adversary with the assumptions.

Remark 1. We point out that the assumption that the hash
function is modelled as a random oracle is reasonable in the
blockchain environment since the security of the PoW
consensus protocol on many existing blockchain platforms
such as Bitcoin and Ethereum also relies on this assumption.

Lemma 2. 5e BNRDTschemes guarantee that the malicious
participant cannot obtain any advantage over the other party
through performing any malicious behaviour if the integrated
commitment scheme in BNRDT provides secure hiding and
binding property, the encryption schemes provide IND-CCA2
security, and the blockchain as well as the smart contract is
trusted and immutable.

Proof. Recall the design of the two schemes, the behaviours
of a malicious participant can be divided into two categories,
one is refusing to respond to the smart contract or the other
participant, and the other is uploading incorrect parameters
to the smart contract. For the first type, we have an algorithm
inside the smart contract called Terminate for the honest

10 Security and Communication Networks



participant to terminate the scheme when needed. Precisely,
Terminate can be called in Phase 2 by the recipient in both
the original and the improved BNRDT schemes when the
sender refuses to make the commitment, in Phase 3 of the
improved BNRDT by the sender when the recipient refuses
to open the commitment, and in Phase 4 of the improved
BNRDT scheme by the recipient when the sender refuses to
make the commitment about the key. +rough algorithm
Terminate, the schemes can handle all of these cases easily. A
problem comes to an honest sender that once he publishes
the ciphertext of the message in phase 3 of the original
BNRDT scheme (or ciphertext of the key in phase 5 of the
improved scheme), and the recipient will be able to decrypt
the asymmetric ciphertext and then obtain the original data,
whether the recipient opens the commitment or not.
However, since the recipient has not redeemed his deposit
dR yet, ifR does not initiate the opening transaction, he also
gets a disadvantage of losing his deposit. +is disadvantage
can be expanded by increasing the amount of deposit, which
offsets the advantage of the recipient. +erefore, the BNRDT
schemes are able to handle all the possible cases that a
malicious participant does not make responses in the
schemes.

Furthermore, since the commitment scheme provides
secure hiding and binding property, the recipient is im-
possible to obtain the secret hash from the commitment
value and impossible to open the commitment with some
other parameter h′ ≠ h and r′ ≠ r, where h is the committed
secret and r is the selected randomness when committing.
Because the smart contract always performs necessary
checks including the identity of the invoker, the current state
of the BNRDT instance, and the correctness of the pa-
rameters, it is also impossible for a malicious participant to
upload any incorrect parameter to the smart contract to
cheat the other party. While we point out that if a malicious
sender publishes an incorrect commitment value comh1
with a correct asymmetric encryption ciphertextC in phase 2
in the original BNRDT scheme or responses an incorrect
comhk1 with a correct Ck in phase 4 in the improved BNRDT
scheme, an honest recipient will asymmetrically decrypt the
correct ciphertext to get the correct message or the correct
key. However, the calculated hash value of the correct
message or correct key is impossible to convince the smart
contract to return the deposit back to the recipient in the
following OpenComm transaction, since it is obvious that
Open (pp, comh1, h′, r′) = 0 in phase 3 of the original BNRDT
scheme and Open(pp, comhk1, hk

′, r1′) = 0 in phase 5 of the
improved BNRDT scheme. If no further measure is taken,
such a malicious sender will succeed in cheating and causing
an honest recipient to lose his deposit, even though the
recipient did not do anything wrong. +e case that a
malicious sender sends a correct commitment with an in-
correct asymmetric encryption ciphertext will result in a
similar problem.

Phase Complain handles the above cases. In this phase,
the honest recipient uploads the temporary private key to the
smart contract; thus, the smart contract can reproduce the
process of decryption and hash calculation and help the
recipient to prove his innocence. If any BRNDT instance

comes to phase Complain, the scheme ends abnormally and
the original date will be available publicly due to the
malicious sender, which goes beyond the protection of data
confidentiality.

Note that the IND-CCA2 security assumption of the
symmetric and asymmetric encryption schemes is also re-
quired, thus to guarantee that the recipient cannot directly
recover the plaintext of the ciphertext and terminate the
scheme without initiating the opening transaction in the
following cases:

(1) +e recipient receives the symmetric encryption
ciphertext of the original data in phase 3 of the
improved BNRDT scheme

(2) +e sender publishes the asymmetric encryption
ciphertext of the key in phase 4 of the improved
BNRDT scheme

(3) +e sender publishes the asymmetric encryption
ciphertext of the original message in phase 2 of the
original BNRDT scheme

We point out that the analysis above is based on the
immutability of and the trust against the blockchain. To
conclude the proof of Lemma 2, our schemes guarantee that
the malicious participant will not get any advantage under
these assumptions.

Lemma 3. 5e BNRDT schemes guarantee that once the
scheme ends normally rather than being interrupted by any
malicious behaviour, any recipient of the BNRDT instances
cannot deny the fact that he has received the data from the
specific sender if the hash function integrated in BNRDT is
modelled as a random oracle, the commitment scheme pro-
vides secure hiding and binding property, and the blockchain
as well as the smart contract is trusted and immutable.

Proof. When an instance of the BNRDT scheme ends
normally, to prove the fact that the recipient has received the
data from the specific sender, we need to prove that

(1) +e data is originated from the sender
(2) +e recipient has received the correct data

If the participants transmit a large file through the
improved BNRDT scheme, the sender will make two
commitments: one is the hash of the symmetric encryption
ciphertext and the other is the hash of the key. And the
recipient is required to open the two commitments by
decrypting and hash calculating. Since the commitment
scheme provides secure binding property, the sender is
impossible to obtain the same commitment value of the
input h through some other secret h′ ≠ h. Besides, the al-
gorithm PubComm always checks that the transaction in-
voker is the sender specified in phase TransRequest, which
binds the commitment with the sender. +erefore, we make
sure that if the correct commitment value is revealed to the
blockchain, the original secret of the commitment instance is
originated from the sender. Moreover, the secret of the
commitment scheme is the hash value of the ciphertext or
the key; since the hash function is modelled as a random
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oracle, the sender is impossible to get the same hash with
some other ciphertext or key. Consequently, the scheme
ensures that the symmetric encryption ciphertext and the
key are originated from the sender.

Similar to the origin of the data, since the hash function
is modelled as a random oracle, and the commitment
scheme provides secure hiding and binding property, the
scheme ensures that the recipient can only open the com-
mitment through calculating hash and uploading the correct
parameters. And the algorithmOpenComm always binds the
opening parameters of the commitment with the recipient.
+erefore, once the scheme instance ends normally with
state variable sL = finished, the recipient must have obtained
the correct symmetric encryption ciphertext and the key and
then the recipient is able to recover the original data.
Consequently, the scheme guarantees that the recipient has
received the correct data.

Now, we talk about how the behaviour of receiving data
can be proved. We still assume that the data is transmitted
through the improved BNRDTscheme. In this case,S claims
to have sent the data of file f to R while R denies having
received f from S. We assume there is a judge, who is the
person to whom the sender wants to prove the fact that the
recipient has received the data. IfS claims to have sent data f
toR by providing the label L, the transmitted data f, the off-
chain transmitted ciphertext Cf, and the symmetric en-
cryption key k as his evidence, S can easily claim his be-
haviour with the help of blockchain records. We call this
property as Nonrepudiation of Receipt (NRR), while we also
need to consider the case thatS is lying. So, as long as one of
the following validations fails, we regardS’s claim is invalid:

(i) +e judge initiates a transaction ofQueryState (L) to
check that the state variable sL of the improved
BNRDT instance labelled with L is finished

(ii) +e judge obtains the parameters in TransRequest
transaction of the improved BNRDT instance la-
belled with L from the blockchain and checks that
IDS is the blockchain account identifier of S and
IDR is the blockchain account identifier of R

(iii) +e judge obtains the parameter hcf′ in OpenComm
transaction in Phase 3, and the parameter hk′ in
OpenComm transaction in Phase 5 of the improved
BNRDT instance labelled with L from the block-
chain then checks that hcf

′ =Hash (Cf|) and
hk
′=Hash (k‖Cf‖L)

(iv) +e judge checks that f= SymDec (k, Cf)

+ese necessary checks guarantee that the data S

claimed is indeed the data that R has successfully received
through the BNRDTscheme, and the originator of the data is
S. +e nonrepudiation evidence is stored on the blockchain.
Note that all the analysis above is based on the immutability
of and the trust against the blockchain.

Lemma 4. 5e BNRDT schemes guarantee that once the
scheme ends normally rather than being interrupted by any
malicious behaviour, any sender of the BNRDT instances
cannot deny the fact that he has sent the data to the specific

recipient if the hash function integrated in BNRDT is mod-
elled as a random oracle, the commitment scheme provides
secure hiding and binding property, and the blockchain as well
as the smart contract is trusted and immutable.

Proof. To prove the fact that a sender has sent the data to the
specific recipient, the proof that the data is originated from
the sender and the recipient has received the correct data are
also required, please check it in proof of Lemma 3. Now, we
talk about how the judge can handle the case that a recipient
R claims to have received some data f fromSwhileS denies
having sent it toR. IfR can offer the label L, the data f, and
the ciphertext Cf, as well as the temporary private key
sktemp as his evidence, it can easily claim the behaviour. We
call this property as Nonrepudiation of Origin (NRO).
Similarly, we also need to consider the case that R is lying.
So, as long as one of the following validations fails, we regard
R’s claim is invalid:

(i) +e judge initiates a transaction ofQueryState (L) to
check that the state variable sL of the improved
BNRDT instance labelled with L is finished.

(ii) +e judge obtains the parameters in TransRequest
transaction of the improved BNRDT instance la-
belled with L from the blockchain and checks that
IDS is the blockchain account identifier of S and
IDR is the blockchain account identifier of R.

(iii) +e judge obtains the parameter hcf
′ in OpenComm

transaction in Phase 3 of the improved BNRDT
instance labelled with L from the blockchain and
then checks that hcf

′ =Hash(Cf

�����L).
(iv) +e judge obtains the parameter Ck in PubComm

transaction in Phase 4 of the improved BNRDT
instance labelled with L from the blockchain, and
executes k″

�����r=AsymDecrypt(sktemp, Ck), and then
checks that f= SymDec(k″, Cf).

Similarly, these necessary checks guarantee that the data
R claimed is indeed the data that S has successfully sent
through the BNRDT scheme. Also note that all the analysis
above is based on the immutability of and the trust against
the blockchain.

Lemma 5. 5e BNRDT schemes guarantee that the gener-
ation of the nonrepudiation evidence of the finished data
transmission instances is fair, which means either all the
participants receive the evidence of the other party’s behaviour
or none of the participants gets any valid evidence, if the
blockchain as well as the smart contract is trusted and
immutable.

Proof. In the improved BNRDT scheme, only when the
recipient successfully opens the hash value of the symmetric
encryption key, the state variable sL of this BNRDT instance
is set to finished, which also means that the scheme ends
normally rather than being interrupted by any malicious
behaviour. For both the validation of the NRO and the NRR
evidence, we require the judge to make sure that the state
variable sL of the BNRDT instance is finished at first. +at is
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to say, either both the NRO evidence and the NRR evidence
of the same BNRDT instance are judged valid, or neither of
them is valid. Since the blockchain as well as the smart
contract is trusted and immutable, nobody, but the smart
contract itself can change the state of sL when being triggered
with the valid parameters. +erefore, the nonrepudiation
evidence of NRR and NRO always appear in pairs, which
ensures the fairness of generating nonrepudiation evidence.

Note the original BNRDT scheme for short message
transmitting is included in the improved one, and the
analysis will be completely similar, so we omit it when
proving Lemma 3 to 5. Above all, we have accomplished the
proof of +eorem 1. To conclude this proof, Lemma 1 has
proved that the BNRDT schemes satisfy Property P1 in the
security model, Lemma 2 has proved that the BNRDT
schemes satisfy Property P2, Lemmas 3 and 4 have proved
that the BNRDT schemes satisfy Property P3, and Lemma 5
has proved that the BNRDT schemes satisfy Property P4.
According to Definition 1, the proposed BNRDT schemes
are secure data transmission schemes.

7. Evaluation

In this section, we first make a comparison between our
BNRDT schemes and some typical nonrepudiation ap-
proaches proposed before in many aspects. After that, we
will discuss the implementation details and evaluate the
performance of our schemes deployed on Hyperledger
Fabric blockchain.

7.1. Feature Comparison. In this section, we compare our
BNRDT schemes with some typical nonrepudiation ap-
proaches including [4, 7, 11] in terms of application, fairness,
confidentiality, TTP-independence, malicious participant
tolerance, and interactions. We point out that the fairness
property here refers to the fairness of generating non-
repudiation evidence of the schemes, while the property P2
(fairness of data transmission) introduced in the security
model is included in malicious participant tolerance.
Moreover, the property confidentiality guarantees that the
data being transmitted is protected against the outsiders, the
property TTP-independence tells us whether the scheme
relies on TTP or not, and interactions shows that the number
of interactions the participants need to perform, which
indicates the scheme’s complexity.

+e comparison is shown in Table 2, note that the
scheme in [7] requires 2n+ 3 interactions between the
sender and the recipient, where n represents the number of
fake decryption keys sent by the sender. To enhance the
security of the scheme, n is always quite large. Also note that
the scheme in [11] cannot always provide the property in
some specific cases, as wementioned before, if a program has
been delivered via the scheme at some time before and the
program is required to be delivered to another client again,
the scheme is not able to handle the malicious behaviours of
the client. In summary, the comparison indicates that our

schemes provide the most balanced and comprehensive
performance in nonrepudiation data transmission scenarios.

7.2. Implementation and Performance. To benchmark the
performance of our schemes, we implemented and evaluated
our BNRDT schemes based on Hyperledger Fabric (version
1.4.1) and a blockchain benchmark framework, Hyperledger
Caliper [33] (version 0.2.0). Since Hyperledger Fabric is a
permissioned blockchain platform, every user owns a cer-
tificate to access the blockchain, the ID of a user can be
derived from his certificate. Unlike those permissionless
blockchains (e.g., Bitcoin and Ethereum), Fabric blockchain
does not have an internal currency; therefore, we need to
design it ourselves to meet the requirements of the scheme’s
deposit. While this is not the focus of our design, so the
implementation here uses a key-value pair stored in the
blockchain ledger to represent the user and his balance. For
the cryptographic implementations, we use the SHA256
algorithm to calculate the hash values, AES for symmetric
encryption, ECIES for asymmetric encryption, and the ECC-
based Pedersen commitment scheme for commitments. +e
blockchain smart contract including the above crypto-
graphic algorithms is written in golang programming lan-
guage. Parameters uploaded when invoking BNRDT
algorithms are encoded to hexadecimal characters and fi-
nally stored in the blockchain ledger.

+e blockchain benchmark framework, Hyperledger
Caliper, is introduced here to measure the performance of
our protocol. Variables that can be manually controlled
when testing include the size of data transmitted using the
BNRDT scheme and the send rate of the blockchain
transactions. By changing these two parameters, we observe
the performance of the BNRDT algorithms on transaction
throughput and average transaction latency. In theory, the
size of the transmitted data will significantly affect the size of
a single Fabric transaction, thereby affecting the time for
transaction distribution and block synchronization (which
can be called the transaction consensus time), and finally
affect the transaction throughput. When the data size is
fixed, the maximum throughput of the deployed Fabric
network to this particular size of transactions will be fixed.
+e send rate of transactions identifies the rate at which the
Fabric client sends transactions to the blockchain network.
When it becomes larger, the blockchain network will
eventually be unable to process all transactions in time,
resulting in an increase in the average latency of
transactions.

We performed the measurements on a five nodes
Hyperledger Fabric network with an orderer node and 2
organizations, 2 peer nodes in each organization. Every node
is deployed in an Ubuntu 16.04 virtual machine with 1 CPU
and 4GB RAM. Virtual machines to deploy peer nodes of
one organization are created in one host physical personal
computer with an Intel(R) Core(TM) i5-8400 CPU
@2.80GHz and 16GB RAM, running Windows 10 (64 bit).
Different peer organizations as well as the orderer node are
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deployed on different host machines, such deployment
makes the node topology closer to the real application
context of Fabric blockchain.

+e Caliper benchmark results are shown in Figure 3,
including the performance of all the 6 algorithms: Trans-
Request, PubComm, OpenComm, Complain, Terminate, and
QueryState. +e throughput benchmark results of the al-
gorithms are shown in Figures 3(a)∼3(f ), and the transaction
latency benchmarks are shown in Figures 3(g)∼3(l).

As can be seen from Figures 3(a) and 3(g), since the
algorithm TransRequest has nothing to do with the size of the
transmitted data, the time taken by the smart contract to
process the transaction is far less than the consensus time
and the algorithm TransRequest gets quite good perfor-
mance. +ere is almost no transaction delay no matter how
the data size and send rate change, so the blockchain can
always process all the transactions less than a second.
However, the performance of the algorithms PubComm,
OpenComm, Complain, and Terminate significantly changes
with the two independent variables.

Turning now to the performance benchmark of algo-
rithm PubComm, when using the original BNRDT scheme,
the third parameter C of the algorithm is the ciphertext
obtained by encrypting the original transmission data, so the
size of PubComm transactions will increase synchronously
with the size of the transmission data. As can be seen from
Figures 3(b) and 3(h), the transactions can also be processed
in time with almost no delay when the send rate and the size
of the transmitted data are low. However, the performance
decreases significantly with the increase of the data size and
send rate. When transmitting 10KB data, the maximum
transaction throughput is only about 28 TPS with huge
transaction latency (up to 10 seconds at the send rate of 60
TPS), which is not suitable to use any more. Performance of
the algorithms OpenComm, Complain, and Terminate is
better than PubComm because the transactions initialized by
clients do not contain the ciphertext, so the size of the
transactions will be fixed. However, these three algorithms
also need to read and modify all the stored parameters
related to the label in the blockchain ledger, so data syn-
chronizing among the nodes still grows with the trans-
mitting data. +at is why the performance of these three
algorithms is not as good as the algorithm TransRequest. We
can see that the benchmark results are consistent with the
theoretical analysis.

In terms of algorithm QueryState, no matter how the
transaction sending rate and the size of transmitted data
change, there is almost no transaction delay, which can be
explained by the principle of Fabric. Concretely, all peer
nodes in the Fabric blockchain network maintain the
complete blockchain ledger. Since the QueryState algorithm
only involves querying the ledger and does not need to
modify the blockchain, the peer nodes can directly return the
results without submitting and synchronizing the transac-
tion. +erefore, all the query transactions can be processed
in time and the QueryStatet algorithm gets such
performance.

To avoid performance degradation caused by the in-
crease in data size, we recommend that users use the
improved BNRDT scheme for transmitting data with
large-size data. In the improved BNRDT scheme, the
length of the data to be asymmetrically encrypted is always
short and fixed (less than 150 bytes in hexadecimal
encoding). Specifically, the parameter Cr in Phase 2 when
invoking the PubComm algorithm is originated from the
random number r1 used in the commitment scheme, and
the parameter Ck of Phase 4 is originated from the ran-
domly generated symmetric encryption key k and the
random number r2. +erefore, the performance of algo-
rithms PubComm, OpenComm, Complain, and Terminate
will be almost consistent with algorithm TransRequest, as
shown in Figure 3 when data size is less than 0.15 KB. We
choose the improved BNRDT scheme when transmitting
data over the size of 5 KB in our environment, thus
balancing the burden of the blockchain and the trans-
action numbers. Users can modulate the threshold value
according to the actual blockchain environment.

Overall, these benchmarks indicate the availability of our
BNRDT scheme in a practical Hyperledger Fabric network.
+e original BNRDT scheme we designed can be used to
efficiently transmit short messages such as passwords or
notifications, and the entire process only needs to initiate
three blockchain transactions. Moreover, the scheme pro-
vides strong evidence of transmission nonrepudiation.
However, when transmitting some big-size data, the direct
transmission based on the blockchain will cause unac-
ceptable transaction latency and even result in submission
failure of the transaction. In such cases, users can use the
improved BNRDT scheme for data transmission by per-
forming two more transactions.

Table 2: Feature comparison of BNRDT and BNRDT-based data transmission scheme and typical nonrepudiation approaches.

Approaches Application Fairness Confidentiality TTP-
independence

Malicious participant
tolerance Interactions

[4] Data transmission ✓ ✕ ✕ ✓ 5
[7] Data transmission ✕ ✓ ✓ ✕ 2n+ 3
[11] IIoT program delivery ✓∗ ✕ ✓ ✓∗ 6
Original BNRDT
scheme

Short message
transmission ✓ ✓ ✓ ✓ 3

Improved BNRDT
scheme Large file transmission ✓ ✓ ✓ ✓ 5

“✓∗ ” means the scheme will not provide the property in some specific cases.
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8. Conclusion

In this paper, motivated by the new requirement of non-
repudiation on secure communication, we start with the
propose of a novel data transmission scheme based on
blockchain technology and named it as BNRDT, which can
get rid of the dependence on TTP and the PKI, and provide
data security and nonrepudiation properties at the same time.
+e original BNRDT scheme requires only 3 interactions to
effectively transmit some data in a secure and undeniable
manner, but its application is limited by the size of the data.
Furthermore, we propose an improved BNRDTscheme based
on the original one to support large file transmission at the
cost of two more interactions, which is still efficient. Com-
pared with existing work on related topics, our application
provides fairness, nonrepudiation, and free of TTP and PKI,
as well as the complete security guarantee, i.e., the data is
protected against outsiders. For any data transmission in-
stance of the BNRDTschemes, the nonrepudiation evidence is
generated and stored directly on the blockchain to realize the

properties of Nonrepudiation of origin (NRO) and Non-
repudiation of receipt (NRR) at the same time. +rough our
experiment on Hyperledger Fabric, we also show the appli-
cability of our schemes. Since data transmission is quite a
basic function required in so many scenarios, we firmly
believe that the proposed schemes are meaningful.
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Figure 3: Caliper transaction throughput and latency benchmark of BNRDT algorithms deployed on Hyperledger Fabric. +e blockchain
network consists of 1 orderer node and 2 peer organizations with 2 peer nodes in each organization.
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