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Intro

• What is MPC?
Secure Multi-Party Computation

• What does it do?
Narrowly speaking, MPC enables multiple parties jointly compute the
result of a function without revealing their respective inputs.

e.g., 𝑛 Parties each holding secret input 𝑥𝑖 (𝑖 ∈ {1,2,⋯ , 𝑛}) wants to jointly 
compute the value of 𝑓 𝑥1, 𝑥2, ⋯ , 𝑥𝑛 without revealing their respective 𝑥𝑖

• Why do we need it?
Application scenarios: Machine learning, medical record analysis, voting or 
bidding system, etc.



Oblivious Transfer
Michael O. Rabin, 1981



Before everything starts...

• Oblivious transfer (OT), 1981

Allows a sender to transfer one out of potentially many
message to receiver in such a way, that the sender does not learn
which specific piece was received by receiver, and the receiver
does not learn which piece was sent by sender.



Oblivious Transfer (OT)

• Imagine a scene: A patient Bob consults with doctor Alice.

I have...
- A complete therapy
- Different treatment for different conditions
- The complete therapy is trade secret

I have...
- A symptom

- Ready for offering details of the condition
- Require details not known by Alice (for privacy)

Alice

Bob



Oblivious Transfer (OT)

• If the process of consultation is as follows:

Alice

Bob

Do you have insomnia?
If yes, [treatment 0]
If no, [treatment 1]

Yes/No.
Yes: get [treatment 0]
No: get [treatment 1]

I have no idea whether 
he has insomnia

I’ll never know the other 
treatment once I answered 

yes/no.

OT



Oblivious Transfer (OT)

• How to achieve that?

First let’s recall public-key cryptography

A party has a public key (known to all) and private key
(known to self). A message encrypted with his public key can only
be decrypted with the corresponding private key.

Note that, the process of decryption doesn’t tell the
correctness. Decoder doesn’t know the success or failure of
decryption if he doesn’t know whether he is using the right key, and
the original message is meaningless (like random string
representing another key).



Oblivious Transfer (OT)

• Let       represent public key cryptography, corresponding key
Let       represent mask (to mask is to add), and         represent 
unmask (to unmask is to minus)

• For example, let 

denotes message 𝑚 encrypted by public key 𝑒 and can be 
decrypted using private key 𝑑.

𝑚 𝑒 𝑑



Oblivious Transfer (OT)

Alice
Bob

𝑒 Public key

𝑥0 𝑥1

Random string (choice)

Random string

Make a choice
(for example 0)

𝑘

𝑘 𝑒 𝑥0

𝑑

Private key

Decode random string

𝑥0 𝑥1



Oblivious Transfer (OT)

Alice
Bob𝑘 𝑒 𝑥0

𝑥0 𝑥1

I don’t know Bob’s choice, so 
I’ll try both key respectively

𝑘 𝑒&#M$1%0^…

𝑑𝑑



Oblivious Transfer (OT)

Alice
Bob

𝑘
$A*%
#@

I still don’t know which 
one is correct

Treatment

𝑚0 𝑚1



Oblivious Transfer (OT)

Alice
Bob

𝑚0
𝑘

𝑚1
@!..

𝑘𝑘



Oblivious Transfer (OT)

Alice
Bob

𝑚0



Oblivious Transfer (OT)

Problems

• How does Bob tell which one he decrypt is correct?

• Is it semi-honest or malicious?



Oblivious Transfer (OT)

Alice
BobOT{𝑚0, 𝑚1} 𝑖 ∈ {0,1}

𝑚𝑖



OT extensions

• Correlated-OT and random-OT

• IKNP

• Standard OT

• …



Garbled Circuit
Andrew Chi-Chih Yao, 1986



Garbled Circuit (GC)

Allows 2 mistrusting parties jointly compute a function over 
their private inputs without a trusted third party.

For example, Alice holding 𝑥0 and Bob holding 𝑥1 want to 
jointly compute 𝑓 𝑥0, 𝑥1 , with Alice know nothing about 𝑥1, and 
Bob know nothing about 𝑥0.



Garbled Circuit (GC)

• Origin: the millionaire problem, 1986

Alice and Bob want to figure out who has more money. How 
can they figure this out without revealing their bank statements?

Alice holding 𝑥0 and Bob holding 𝑥1 wants to compute

𝑓 𝑥0, 𝑥1 = ቊ
0, 𝑥0 ≤ 𝑥1
1, 𝑥0 > 𝑥1

without revealing their own inputs.



Garbled Circuit (GC)

• Why ‘Circuit’?
jointly compute -> communication
secret input -> encryption
computation over secret input -> homomorphic encryption

𝑥0 → 𝑐0 = 𝐸𝑛𝑐 𝑥0
𝑥1 → 𝑐1 = 𝐸𝑛𝑐(𝑥1)

𝐷𝑒𝑐(𝑐0 + 𝑐1) = 𝑥0 + 𝑥1
But! There’s no such technique then...



Garbled Circuit (GC)

• Why Circuit?

So, to directly encrypt private input is not possible.

But what else can be encrypt?

The process of computing

Computation on computer are performed over gates. So if 
we can encrypt gates, theoretically we can perform security 
computation.



Garbled Circuit (GC)

• How to encrypt a gate?

Assume our circuit only consist of 1 gate. Alice holding one-
bit 𝑥 and Bob holding one-bit 𝑦 wants to know the AND of their 
inputs: 

𝑧 = 𝑓 𝑥, 𝑦 = 𝑥 ∧ 𝑦

Which can be represented by the circuit (or gate) below:



Garbled Circuit (GC)

This is the truth table of the gate:

To encrypt the gate is to encrypt the truth table. Our aim is to 
make the logic function, input, and output of the gate unclear.

𝑥 𝑦 𝑧

0 0 0

0 1 0

1 0 0

1 1 1



Garbled Circuit (GC)

Truth table of encrypted AND gate:

Let the 𝑘 be random strings representing inputs 0 or 1

𝑥 𝑦 𝑧

𝑘𝑥,0 𝑘𝑦,0 𝐸𝑛𝑐(𝑘𝑥,0, 𝐸𝑛𝑐 𝑘𝑦,0, 𝑘𝑧,0 )

𝑘𝑥,0 𝑘𝑦,1 𝐸𝑛𝑐(𝑘𝑥,0, 𝐸𝑛𝑐 𝑘𝑦,1, 𝑘𝑧,0 )

𝑘𝑥,1 𝑘𝑦,0 𝐸𝑛𝑐(𝑘𝑥,1, 𝐸𝑛𝑐 𝑘𝑦,0, 𝑘𝑧,0 )

𝑘𝑥,1 𝑘𝑦,1 𝐸𝑛𝑐(𝑘𝑥,1, 𝐸𝑛𝑐 𝑘𝑦,1, 𝑘𝑧,1 )

Possible output

Encrypted output



Garbled Circuit (GC)

If only one party know the truth table, for the other party,  
the evaluating of the circuit is encrypted. 

So, if we let one party craft the circuit (define the truth table), 
let the other party evaluate it (calculate the output of gates), the 
process of evaluating is garbled for the evaluator. (Because he has 
no idea what is the function of the gate, nor other possible outputs.)

𝑥 𝑦 𝑧

𝑘𝑥,0 𝑘𝑦,0 𝐸𝑛𝑐(𝑘𝑥,0, 𝐸𝑛𝑐 𝑘𝑦,0, 𝑘𝑧,0 )

𝑘𝑥,0 𝑘𝑦,1 𝐸𝑛𝑐(𝑘𝑥,0, 𝐸𝑛𝑐 𝑘𝑦,1, 𝑘𝑧,0 )

𝑘𝑥,1 𝑘𝑦,0 𝐸𝑛𝑐(𝑘𝑥,1, 𝐸𝑛𝑐 𝑘𝑦,0, 𝑘𝑧,0 )

𝑘𝑥,1 𝑘𝑦,1 𝐸𝑛𝑐(𝑘𝑥,1, 𝐸𝑛𝑐 𝑘𝑦,1, 𝑘𝑧,1 )



Garbled Circuit (GC)

• What Alice know

Inputs/outputs keys

𝑥 = 0 𝑘𝑥,0

𝑥 = 1 𝑘𝑥,1

𝑦 = 0 𝑘𝑦,0

𝑦 = 1 𝑘𝑦,1

𝑧 = 0 𝑘𝑧,0

𝑧 = 1 𝑘𝑧,1

𝑥 𝑦 𝑧

𝑘𝑥,0 𝑘𝑦,0 𝐸𝑛𝑐(𝑘𝑥,0, 𝐸𝑛𝑐 𝑘𝑦,0, 𝑘𝑧,0 )

𝑘𝑥,0 𝑘𝑦,1 𝐸𝑛𝑐(𝑘𝑥,0, 𝐸𝑛𝑐 𝑘𝑦,1, 𝑘𝑧,0 )

𝑘𝑥,1 𝑘𝑦,0 𝐸𝑛𝑐(𝑘𝑥,1, 𝐸𝑛𝑐 𝑘𝑦,0, 𝑘𝑧,0 )

𝑘𝑥,1 𝑘𝑦,1 𝐸𝑛𝑐(𝑘𝑥,1, 𝐸𝑛𝑐 𝑘𝑦,1, 𝑘𝑧,1 )



Garbled Circuit (GC)

• What Bob know

Alice’s input  𝑘𝑥,𝑖 (𝑖 ∈ {0,1}), for example 𝑘𝑥,0

Bob’s input 𝑘𝑦,𝑖 (𝑖 ∈ {0,1}), for example 𝑘𝑦,1

But not the corresponding of 𝒊 and 𝒌𝒙,𝒊 or 𝒌𝒚,𝒊

All encrypted outputs:
𝑧0 = 𝐸𝑛𝑐(𝑘𝑥,0, 𝐸𝑛𝑐 𝑘𝑦,0, 𝑘𝑧,0 )

𝑧1 = 𝐸𝑛𝑐(𝑘𝑥,0, 𝐸𝑛𝑐 𝑘𝑦,1, 𝑘𝑧,0 )

𝑧2 = 𝐸𝑛𝑐(𝑘𝑥,1, 𝐸𝑛𝑐 𝑘𝑦,0, 𝑘𝑧,0 )

𝑧3 = 𝐸𝑛𝑐(𝑘𝑥,1, 𝐸𝑛𝑐 𝑘𝑦,1, 𝑘𝑧,1 )



Garbled Circuit (GC)

• How Bob evaluate

𝐷𝑒𝑐 𝑘𝑦,1, 𝐷𝑒𝑐 𝑘𝑥,0, 𝑧0 = 𝐹𝐴𝐼𝐿

𝐷𝑒𝑐 𝑘𝑦,1, 𝐷𝑒𝑐 𝑘𝑥,0, 𝑧1 = 𝑘𝑧,0

𝐷𝑒𝑐 𝑘𝑦,1, 𝐷𝑒𝑐 𝑘𝑥,0, 𝑧2 = 𝐹𝐴𝐼𝐿

𝐷𝑒𝑐 𝑘𝑦,1, 𝐷𝑒𝑐 𝑘𝑥,0, 𝑧3 = 𝐹𝐴𝐼𝐿

Without the other keys, Bob has no way of knowing which 
truth table is used and gets no information about which values the 
input keys represent.



Garbled Circuit (GC)

• Problem: How does Bob know the input keys?

Alice can directly send the keys corresponding to her own 
inputs to Bob, because Bob doesn’t know the corresponding 
relation. But what about Bob’s input?

Is there any technique that enables Bob to get the key 
corresponding to his input from Alice, but reveal nothing about his 
input?

OT



Garbled Circuit (GC)

Alice
BobOT{𝑘𝑦,0, 𝑘𝑦,1} 𝑖 ∈ {0,1}

𝑘𝑦,𝑖

All the building blocks are ready, time to construct the protocol



Garbled Circuit (GC)

Alice
Bob

1. Alice craft a circuit, and encrypt it
(keep the truth table and corresponding 
relation)

Truth table
Corresponding table
Final output
result

2. Alice send her inputs (keys) and 
the circuit to Bob (circuit includes the 
encrypted outputs)

3. Bob get his input keys from 
Alice through OT

Garbled circuit
Alice’s input keys
Bob’s input keys
Final output
result

4. Bob evaluate the circuit, and 
send the final output to Alice

5. Alice reveal the result



Still confused?



Garbled Circuit (GC)

Alice

1. Alice craft a circuit, and encrypt it
(keep the truth table and corresponding 
relation)

𝑥 𝑦 𝑧

𝑘𝑥,0 𝑘𝑦,0 𝐸𝑛𝑐(𝑘𝑥,0, 𝐸𝑛𝑐 𝑘𝑦,0, 𝑘𝑧,0 )

𝑘𝑥,0 𝑘𝑦,1 𝐸𝑛𝑐(𝑘𝑥,0, 𝐸𝑛𝑐 𝑘𝑦,1, 𝑘𝑧,0 )

𝑘𝑥,1 𝑘𝑦,0 𝐸𝑛𝑐(𝑘𝑥,1, 𝐸𝑛𝑐 𝑘𝑦,0, 𝑘𝑧,0 )

𝑘𝑥,1 𝑘𝑦,1 𝐸𝑛𝑐(𝑘𝑥,1, 𝐸𝑛𝑐 𝑘𝑦,1, 𝑘𝑧,1 )

Let 𝐸𝑛𝑐 𝑎, 𝑏 = 𝑎 ⊕ 𝑏

𝑥 𝑦 𝑧

1001 0001 1001⊕ 0001⊕ 1110 = 0110

1001 1101 1001⊕ 1101⊕ 1110 = 1010

1010 0001 1010⊕ 0001⊕ 1110 = 0101

1010 1101 1010⊕ 1101⊕ 1111 = 1000

Inputs/outputs keys

𝑥 = 0 1001

𝑥 = 1 1010

𝑦 = 0 0001

𝑦 = 1 1101

𝑧 = 0 1110

𝑧 = 1 1111



Garbled Circuit (GC)

Alice

2. Alice send her inputs (keys) and the 
circuit to Bob (circuit includes the 
encrypted outputs)

Alice input:
1001
Circuit:
𝐺𝑎𝑡𝑒( 0110,1010,0101,1000 )

Inputs/outputs keys

𝑥 = 0 1001

𝑥 = 1 1010

𝑦 = 0 0001

𝑦 = 1 1101

𝑧 = 0 1110

𝑧 = 1 1111

Bob



Garbled Circuit (GC)

Alice

3. Bob get his input keys from Alice 
through OT

Alice input:
1001
Circuit:
𝐺𝑎𝑡𝑒( 0110,1010,0101,1000 )

Inputs/outputs keys

𝑥 = 0 1001

𝑥 = 1 1010

𝑦 = 0 0001

𝑦 = 1 1101

𝑧 = 0 1110

𝑧 = 1 1111

Bob

OT𝑘𝑦,0 = 0001

𝑘𝑦,1 = 1101
𝑖 = 1

𝑘 = 1101



Garbled Circuit (GC)

Alice

4. Bob evaluate the circuit, and send 
the final output to Alice

Alice input:
1001
Bob input:
1101
Circuit:
𝐺𝑎𝑡𝑒( 0110,1010,0101,1000 )

Inputs/outputs keys

𝑥 = 0 1001

𝑥 = 1 1010

𝑦 = 0 0001

𝑦 = 1 1101

𝑧 = 0 1110

𝑧 = 1 1111

Bob1001⊕ 1101⊕ 0110 = 0010 (𝐹𝐴𝐼𝐿)
1001⊕ 1101⊕ 1010 = 1110
1001⊕ 1101⊕ 0101 = 0001 (𝐹𝐴𝐼𝐿)
1001⊕ 1101⊕ 1000 = 1100 (𝐹𝐴𝐼𝐿)

Question: How does Bob know whether he 
decrypts correctly?
1. Alice add pre-negotiated info in the 
possible outputs, for example a string of 0
2. point-and-permute: the last n-bit 
serve as a pointer to the permuted table, 
indicating which row to be decrypted.



Garbled Circuit (GC)

Alice

Inputs/outputs keys

𝑥 = 0 1001

𝑥 = 1 1010

𝑦 = 0 0001

𝑦 = 1 1101

𝑧 = 0 1110

𝑧 = 1 1111

Alice input:
1001
Bob input:
1101
Circuit:
𝐺𝑎𝑡𝑒( 0110,1010,0101,1000 )
Final output:
1110

Bob

4. Bob evaluate the circuit, and send 
the final output to Alice

Final output:
1110

Final output:
1110



Garbled Circuit (GC)

Alice

Inputs/outputs keys

𝑥 = 0 1001

𝑥 = 1 1010

𝑦 = 0 0001

𝑦 = 1 1101

𝑧 = 0 1110

𝑧 = 1 1111

Alice input:
1001
Bob input:
1101
Circuit:
𝐺𝑎𝑡𝑒( 0110,1010,0101,1000 )
Final output:
1110

BobFinal output:
1110

5. Alice reveal the result

Result:
𝑧 = 0
Result:
𝑧 = 0



Garbled Circuit (GC)

• What about multiple gates?
i/o keys

𝑖𝑛𝑎 = 0 𝑎0

𝑖𝑛𝑎 = 1 𝑎1

𝑖𝑛𝑏 = 0 𝑏0

𝑖𝑛𝑏 = 1 𝑏1

𝑜𝑢𝑡𝑐 = 0 𝑐0

𝑜𝑢𝑡𝑐 = 1 𝑐1
i/o keys

𝑥 = 0 𝑑0

𝑥 = 1 𝑑1

𝑦 = 0 𝑒0

𝑦 = 1 𝑒1

𝑧 = 0 𝑓0

𝑧 = 1 𝑓1

i/o keys

𝑖𝑛𝑎 = 0 𝑐0

𝑖𝑛𝑎 = 1 𝑐1

𝑖𝑛𝑏 = 0 𝑓0

𝑖𝑛𝑏 = 1 𝑓1

𝑜𝑢𝑡𝑐 = 0 𝑔0

𝑜𝑢𝑡𝑐 = 1 𝑔1

𝑎

𝑏

𝑐

𝑑

𝑒

𝑓

𝑔



Garbled Circuit (GC)

• Optimizations and extensions

Point-and-permute

Free XOR

Multi-party GC: BMR

…



Garbled Circuit (GC)

If you are interested in the implementation of GC using 
programming language, here I got a demo in Python on my GitHub:

https://github.com/thewatertells/demoGC

Notes: I’m a noob coder and the TOY program only focus on 
IMPLEMENTATION but not efficiency and stability. The codes may 
seem dull, and definitely need optimization in many places.

https://github.com/thewatertells/demoGC


Goldreich-Micali-Wigderson 
protocol
Oded Goldreich, Silvio Micali, Avi Wigderson, 1987



GMW

Similar with GC, GMW protocol allows 2 mistrusting parties 
jointly evaluate a circuit over their private inputs without a 
trusted third party.

Core concept: additive secret sharing



GMW

• What is additive secret sharing?

Alice
Bob

There is a secret 𝑥 (private to a third party)
Let 𝑥 = 𝑥0⊕𝑥1
Then send 𝑥0 to Alice, send 𝑥1 to Bob

𝑥0 𝑥1

Each party doesn’t know the secret, but 
they can reconstruct the secret by 
adding their shares

Additive sharing holds for both single bits 
and bit strings



GMW

Alice
Bob

I have a secret bit 𝑥 ∈ {0,1} I have a secret bit 𝑦 ∈ {0,1}

Let 𝑥 = 𝑥0⊕𝑥1 Let 𝑦 = 𝑦0⊕𝑦1

𝑥0
𝑦1

I keep 𝑥0, 
then send 𝑥1 to Bob

I keep 𝑦1, 
then send 𝑦0 to Alice

𝑦0
𝑥1

Alice won’t know 𝑦 without Bob, 
Bob won’t know 𝑥 without Alice



GMW

• Secure computation. 

Alice
Bob

𝑥0

𝑦0

𝑦1

𝑥1

𝑋𝑂𝑅: To compute 
𝑧 = 𝑥 ⊕ 𝑦

Note that: 
𝑧 = 𝑥 ⊕ 𝑦 = 𝑥0⊕𝑥1⊕𝑦0⊕𝑦1

If we share 𝑧 as 
𝑧 = 𝑧0⊕𝑧1

Then
𝑧 = 𝑥0⊕𝑦0 ⊕(𝑥1 ⊕𝑦1)
𝑧0 = 𝑥0⊕𝑦0
𝑧1 = 𝑥1⊕𝑦1

Consider a functionally complete set {∧ (𝐴𝑁𝐷), ¬(𝑁𝑂𝑇),⊕ (𝑋𝑂𝑅)}

𝑧0
𝑧1



GMW

• Secure computation. 

Alice
Bob

𝑥0

𝑦0

𝑦1

𝑥1

𝑁𝑂𝑇: To compute 
𝑧 = ҧ𝑥

Note that:
𝑧 = 𝑥0⊕𝑥1 = 𝑥0⊕𝑥1 = 𝑥0⊕𝑥1

If we share 𝑧 as
𝑧 = 𝑧0⊕𝑧1

Then
𝑧0 = 𝑥0, 𝑧1 = 𝑥1

Or
𝑧0 = 𝑥0, 𝑧1 = 𝑥1

Consider a functionally complete set {∧ (𝐴𝑁𝐷), ¬(𝑁𝑂𝑇),⊕ (𝑋𝑂𝑅)}

𝑧0
𝑧1



GMW

• Secure computation. 

Alice
Bob

𝑥0

𝑦0

𝑦1

𝑥1

Consider a functionally complete set {∧ (𝐴𝑁𝐷), ¬(𝑁𝑂𝑇),⊕ (𝑋𝑂𝑅)}

𝑋𝑂𝑅 and 𝑁𝑂𝑇 gates can be evaluated without any interaction
Evaluating an 𝐴𝑁𝐷 gate requires interaction and uses 
1-out-of-4 OT



GMW

• Secure computation. 

Alice
Bob

𝑥0

𝑦0

𝑦1

𝑥1

Consider a functionally complete set {∧ (𝐴𝑁𝐷), ¬(𝑁𝑂𝑇),⊕ (𝑋𝑂𝑅)}

𝐴𝑁𝐷: To compute 
𝑧 = 𝑥 ∧ 𝑦

Note that:
𝑧 = 𝑥0⊕𝑥1 ∧ (𝑦0⊕𝑦1)

Alice choose a random bit 𝑟 as a mask, 
and enumerate all possible 𝑥1 and 𝑦1

𝑤00 = 𝑟⊕ 𝑥0⊕0 ∧ (𝑦0⊕0)
𝑤01 = 𝑟⊕ 𝑥0⊕0 ∧ (𝑦0⊕1)
𝑤10 = 𝑟⊕ 𝑥0⊕1 ∧ (𝑦0⊕0)
𝑤11 = 𝑟⊕ 𝑥0⊕1 ∧ (𝑦0⊕1)

2-bit str: 𝑥1𝑦1

1-4 OT

Why mask?

𝑧0 = 𝑟 𝑧1 = 𝑟⊕ 𝑥0⊕𝑥1 ∧ (𝑦0⊕𝑦1)



GMW

• Secure computation. 

Alice
Bob

Consider a functionally complete set {∧ (𝐴𝑁𝐷), ¬(𝑁𝑂𝑇),⊕ (𝑋𝑂𝑅)}

After evaluating all gates, parties reveal to each other the shares 
of the final output to obtain the output of the entire 
computation.



GMW

• Generalization to more than 2 parties

For 𝑋𝑂𝑅 gates, the parties locally 𝑋𝑂𝑅 their share.

For 𝑁𝑂𝑇 gates, one of the parties flip his share.

For 𝐴𝑁𝐷 gates, consider the following equation:

( σ here is the summation of 𝑋𝑂𝑅)
𝑐 = 𝑎 ∧ 𝑏 = 𝑎1 ⊕⋯⊕ 𝑎𝑛 ∧ (𝑏1 ⊕⋯⊕ 𝑏𝑛)

= ෍

𝑖=1

𝑛

𝑎𝑖 ∧ 𝑏𝑖 ⊕ ෍

𝑖≠𝑗

𝑎𝑖 ∧ 𝑏𝑗

Computed locally
1-4 OT with 
every other party



Ben-Or Goldwasser Wigderson 
protocol
Michael Ben-Or, Shafi Goldwasser, Avi Wigderson, 1988



BGW

Although differ in many perspectives, GC and GMW both 
focus on Boolean circuits. The encryption or sharing is on single 
bits.

BGW protocol can be used to evaluate an arithmetic circuit
(over a finite field), whose encryption and sharing is operated on 
numbers, consisting of addition, multiplication (by secrets and by 
constant numbers).



BGW

• Recall Shamir secret sharing:

A secret can be represented as the constant term of a 
polynomial, the values of the polynomial at different points can be 
considered as shares of the secret.

A threshold number of shares can be used reconstruct the 
polynomial and the secret through Lagrange interpolation.



BGW

• Recall Shamir secret sharing:
• Choose secret and define the polynomial:

Suppose a secret 𝑠 shared among 𝑛 parties with a threshold 𝑡.

Generate 𝑓 𝑥 = 𝑎0 + 𝑎1𝑥 +⋯+ 𝑎𝑡−1𝑥
𝑡−1 on finite field 𝐺𝐹(𝑞)

• Distribute shares:
For each party 𝑖 (public, 𝑖 ∈ {1,2, … , 𝑛}) calculate si = 𝑓(𝑥𝑖) (private), 

send (𝑖, 𝑠𝑖) as share.
• Reconstruct secret:

Choose 𝑡 shares  𝑖1, 𝑠𝑖1 , 𝑖2, 𝑠𝑖2 , … , 𝑖𝑡 , 𝑠𝑖𝑡 and calculate:

𝑎0 = 𝑠 = −1 𝑘෍

𝑗=1

𝑘

𝑓 𝑖𝑗 ෑ

𝑙=1,𝑙≠𝑗

𝑘
𝑖𝑙

𝑖𝑗 − 𝑖𝑙
𝑚𝑜𝑑 𝑞



BGW

• Core concept of BGW:

Similar with GMW, BGW protocol enables parties to evaluate 
an arithmetic circuit using “Shared values”. Evaluation may involve 
calculating shared values locally (when doing addition), or 
communication with several parties (when doing multiplication).



BGW

• What does BGW do:

𝑡 parties 𝑖 ∈ 1,2, … , 𝑡 each holding secret 𝑥𝑖 . Now the 
parties want to jointly compute a polynomial

𝑓 𝑥1, 𝑥2, … , 𝑥𝑡 .

Superscript represents secret, subscripts represents share.

Each party 𝑖 share his secret 𝑥𝑖as 𝑥1
𝑖 , 𝑥2

𝑖 , … , 𝑥𝑡
𝑖 using Shamir 

secret sharing, and distribute each 𝑥𝑗
𝑖 to party 𝑗.

So now, every party 𝑖 is holding 𝑥𝑖
1, 𝑥𝑖

2, … , 𝑥𝑖
𝑡



BGW

Consider the polynomial 
𝑓 𝑥1, 𝑥2, … , 𝑥𝑡

There may be: 
• addition of secrets
• multiplication of secrets
• multiplication of secrets and constant number.



BGW

• Addition

Assume we have 2 secrets 𝑥, 𝑦 shared among 𝑡 parties as:

𝑥
𝑠ℎ𝑎𝑟𝑒

𝑥1, 𝑥2, … 𝑥𝑡 , 𝑦
𝑠ℎ𝑎𝑟𝑒

{𝑦1, 𝑦2, … , 𝑦𝑡}

Now we want to secretly compute 𝑧 = 𝑥 + 𝑦, and share 𝑧

Then for each party, locally compute 𝑧𝑖 = 𝑥𝑖 + 𝑦𝑖 , and all 𝑧𝑖
reconstructs 𝑧.

𝑧
𝑟𝑒𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡

𝑧1, 𝑧2, … , 𝑧𝑡



BGW

according to Shamir’s method, 2 polynomials can be 
reconstructed as follow:

𝑥 is shared using polynomial:
𝑓 𝑢 = 𝑎0 + 𝑎1𝑢 + 𝑎2𝑢

2 +⋯+ 𝑎𝑡−1𝑢
𝑡−1

where 𝑎0 = 𝑥. Each share 𝑥𝑖 = 𝑓(𝑖).

𝑦 is shared using polynomial:
𝑔 𝑣 = 𝑏0 + 𝑏1𝑣 + 𝑏2𝑣

2 +⋯+ 𝑏𝑡−1𝑢
𝑡−1

where 𝑏0 = 𝑦. Each share 𝑦𝑖 = 𝑔(𝑖).



BGW

For each party 𝑖 calculate 
𝑧𝑖 = 𝑥𝑖 + 𝑦𝑖 = 𝑓 𝛼𝑖 + 𝑔(𝛼𝑖)

Then all 𝑧𝑖 will reconstruct a function 
ℎ · = 𝑓 · + 𝑔(·)

Which is:
ℎ 𝑤 = 𝑎0 + 𝑏0 + 𝑎1 + 𝑏1 𝑤 +⋯+ 𝑎𝑡−1 + 𝑏𝑡−1 𝑤𝑡−1

Whose constant term 𝑎0 + 𝑏0 = 𝑥 + 𝑦 = 𝑧



BGW



BGW



BGW



BGW



BGW

• Multiplication with constant number

Assume we have a secret 𝑥 shared by 𝑡 parties:

𝑥
𝑠ℎ𝑎𝑟𝑒

𝑥1, 𝑥2, … 𝑥𝑡

Now we want to secretly compute 𝑧 = 𝑐 · 𝑥 and share 𝑧.

Then for each party 𝑖, locally compute 𝑧𝑖 = 𝑐 · 𝑥𝑖 , and all 𝑧𝑖
reconstructs 𝑧.

𝑧
𝑟𝑒𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡

𝑧1, 𝑧2, … , 𝑧𝑡



BGW

• Multiplication of secrets

Assume we have 2 secrets 𝑥, 𝑦 shared among 𝑛 parties as:

𝑥
𝑠ℎ𝑎𝑟𝑒

𝑥1, 𝑥2, … 𝑥𝑛 , 𝑦
𝑠ℎ𝑎𝑟𝑒

{𝑦1, 𝑦2, … , 𝑦𝑛}

Now we want to secretly compute 𝑧 = 𝑥 · 𝑦, and share 𝑧

If we use methods similar with secret addition, we may 
encounter problems as follow



BGW

• Problems:
• If we simply let shares of product 𝑧𝑖 = 𝑥𝑖 · 𝑦𝑖 , the polynomial we’re about 

to reconstruct is ℎ · = 𝑓 · 𝑔 · , whose constant term is 𝑥 · 𝑦, but of 
degree 2𝑡 − 1.

ℎ 𝑢 = 𝑎0 + 𝑏0 + ෍

𝑖+𝑗=1

𝑎𝑖𝑏𝑖 𝑥 + ෍

𝑖+𝑗=2

𝑎𝑖𝑏𝑖 𝑥2 +⋯+ ෍

𝑖+𝑗=2𝑡−1

𝑎𝑖𝑏𝑖 𝑥2𝑡−1

If number of parties 𝑛 > 2𝑡 − 1 we do can reconstruct the polynomial 
using 2𝑡 − 1 shares. But for consistency, we want the share of the product 
has the same threshold as multiplicated polynomials, which is 𝑡.



BGW

• Solution: degree reduction
• Our intention is to truncate a polynomial of degree 2𝑡 − 1 to 𝑡 − 1 with 

the same constant term, and re-share the truncated polynomial.

**NOTE**
In this protocol, we only deal with cases when 𝑛 ≥ 2𝑡 − 1. This protocol 
cannot achieve secret multiplication when 𝑛 < 2𝑡 − 1. It can only 
truncate and reduce the degree of the product polynomial corresponding 
to the secret multiplication when the number of parties is sufficient, making 
the threshold match the factor polynomials.



BGW

• Solution: degree reduction
• Each party 𝑖 ∈ [1, 𝑛] holds 𝛼𝑖 , 𝑥𝑖 = 𝑓 𝛼𝑖 , 𝑦𝑖 = 𝑔 𝛼𝑖 , 𝛼𝑖 is public.

• For every party 𝑖, let 
𝑠𝑖 = 𝑥𝑖 · 𝑦𝑖 = ℎ 𝛼𝑖 = 𝑓 𝛼𝑖 𝑔 𝛼𝑖

• The original product polynomial is:
ℎ 𝑢 = ℎ0 + ℎ1𝑢 + ℎ2𝑢

2 +⋯+ ℎ2𝑡−1𝑢
2𝑡−1

• Define the truncation of ℎ(·) to be:
𝑘 𝑢 = ℎ0 + ℎ1𝑢 + ℎ2𝑢

2 +⋯+ ℎ𝑡−1𝑢
𝑡−1

• Then 𝑘 ·  is the polynomial we want to re-share and reconstruct. We 
want to distribute 𝑟𝑖 = 𝑘(𝛼𝑖) to every party 𝑖, so that all 𝑟𝑖 reconstructs 
𝑘 · .



BGW

• Solution: degree reduction
• Luckily, there’s relationship between 𝑟𝑖 and 𝑠𝑖 :
Let 𝑆 = (𝑠0, 𝑠1, … , 𝑠𝑛), and 𝑅 = 𝑟0, 𝑟1, … , 𝑟𝑛 , there is a 𝑛 × 𝑛 matrix 𝐴 that:

𝑅 = 𝑆 · 𝐴

Our goal is to secretly find 𝐴.



BGW

• Solution: degree reduction
• Let 𝐻 be a 1 × 𝑛 vector consists of coefficients of ℎ ·

𝐻 = ℎ0, ℎ1, … , ℎ𝑡−1, … , ℎ2𝑡−1, 0, … , 0

• Let 𝐾 be a 1 × 𝑛 vector consists of coefficients of 𝑘 ·
𝐾 = (ℎ0, ℎ1, … ℎ𝑡−1, 0, … 0)

• Let 𝐵 be an 𝑛 × 𝑛 Vandermonde matrix, where 𝑏𝑖𝑗 = 𝛼𝑗
𝑖 , 

𝑃 be a 𝑛 × 𝑛 linear projection that 𝑃 𝑥1, … , 𝑥𝑛 = 𝑥1, … , 𝑥𝑡−1, 0, … , 0

𝐵 =

1
𝛼1
𝛼1
2

⋮
𝛼1
𝑛−1

1
𝛼2
𝛼2
2

⋮
𝛼2
𝑛−1

1
𝛼3
𝛼3
2

⋮
𝛼3
𝑛−1

⋯
⋯
⋯
⋱
⋯

1
𝛼𝑛
𝛼𝑛
2

⋮
𝛼𝑛
𝑛−1

, 𝑃 =

1
⋱

1
0

⋱
0



BGW

• Solution: degree reduction
• Now we have:

𝐻𝐵 = 𝑆

ℎ0 ℎ1 ··· ℎ2𝑡−1 0 ··· 0 ·

1
𝛼1
𝛼1
2

⋮
𝛼1
𝑛−1

1
𝛼2
𝛼2
2

⋮
𝛼2
𝑛−1

1
𝛼3
𝛼3
2

⋮
𝛼3
𝑛−1

⋯
⋯
⋯
⋱
⋯

1
𝛼𝑛
𝛼𝑛
2

⋮
𝛼𝑛
𝑛−1

= [𝑠1 𝑠2 ··· 𝑠𝑛]

ℎ 𝛼1



BGW

• Solution: degree reduction 
• Now we have:

𝐻𝑃 = 𝐾

ℎ0 ℎ1 ··· ℎ2𝑡−1 0 ··· 0 ·

1
⋱

1
0

⋱
0

= ℎ0 ℎ1 ··· ℎ𝑡−1 0 ··· 0



BGW

• Solution: degree reduction 
• Now we have:

𝐾𝐵 = 𝑅

ℎ0 ℎ1 ··· ℎ𝑡−1 0 ··· 0 ·

1
𝛼1
𝛼1
2

⋮
𝛼1
𝑛−1

1
𝛼2
𝛼2
2

⋮
𝛼2
𝑛−1

1
𝛼3
𝛼3
2

⋮
𝛼3
𝑛−1

⋯
⋯
⋯
⋱
⋯

1
𝛼𝑛
𝛼𝑛
2

⋮
𝛼𝑛
𝑛−1

= 𝑟1 𝑟2 ··· 𝑟𝑡−1 0 ··· 0

𝑘 𝛼1



BGW

• Solution: degree reduction 
• Now we have:

𝐻𝐵 = 𝑆
𝐻𝑃 = 𝐾
𝐾𝐵 = 𝑅

So we’ll get:
𝑅 = 𝑆 𝐵−1𝑃𝐵

The 𝐵−1𝑃𝐵 is the 𝐴 we want to find, i.e.
𝑅 = 𝑆𝐴

because matrix 𝐵 and 𝑃 does not involve secrets, 𝐴 can be computed 
locally by each party.



BGW

• We successfully find a projection from 𝑠𝑖 to 𝑟𝑖 that makes only 𝑡
secrets is needed for reconstruction of secret 𝑧 = 𝑥 · 𝑦

𝑥
𝑠ℎ𝑎𝑟𝑒

𝑥1, 𝑥2, … , 𝑥𝑡 , 𝑦
𝑠ℎ𝑎𝑟𝑒

{𝑦1, 𝑦2, … , 𝑦𝑡}

𝑠𝑖 = 𝑥𝑖 · 𝑦𝑖

𝑧
𝑟𝑒𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡

𝑠1, 𝑠2, … , 𝑠2𝑡 , 𝑧 ↚ 𝑠1, 𝑠2, … , 𝑠𝑡

𝑠1, 𝑠2, … , 𝑠2𝑡
𝑝𝑟𝑜𝑗𝑒𝑐𝑡𝑖𝑜𝑛

{𝑟1, 𝑟2, … 𝑟𝑡}

𝑧
𝑟𝑒𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡

{𝑟1, 𝑟2, … 𝑟𝑡}



BGW

Is it safe?

𝑥
𝑠ℎ𝑎𝑟𝑒

𝑥1, 𝑥2, … , 𝑥𝑡 , 𝑦
𝑠ℎ𝑎𝑟𝑒

{𝑦1, 𝑦2, … , 𝑦𝑡}

𝑠𝑖 = 𝑥𝑖 · 𝑦𝑖

𝑠1, 𝑠2, … , 𝑠2𝑡
𝑝𝑟𝑜𝑗𝑒𝑐𝑡𝑖𝑜𝑛

{𝑟1, 𝑟2, … 𝑟𝑡}

𝑧
𝑟𝑒𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡

{𝑟1, 𝑟2, … 𝑟𝑡} Need to be revealed

infer

factorize



BGW

• Solution: randomization 
Before the degree reduction:
• Let every party generate a polynomial 𝑞𝑖(·) of degree 2𝑡 − 1 with 

constant term 0, and reveal the polynomial.
• Then for every party 𝑃𝑖 , calculate:

ℎ′ 𝛼𝑖 = ℎ 𝛼𝑖 +෍

𝑗=1

𝑛

𝑞𝑗 𝛼𝑖

as his share 𝑠𝑖
Secret that can be factorized

Random number



BGW

• Whole process

𝑥
𝑠ℎ𝑎𝑟𝑒

𝑥1, 𝑥2, … , 𝑥𝑡 , 𝑦
𝑠ℎ𝑎𝑟𝑒

{𝑦1, 𝑦2, … , 𝑦𝑡}

𝑠′𝑖 = 𝑥𝑖 · 𝑦𝑖 = 𝑓 𝛼𝑖 · 𝑔(𝛼𝑖)

𝑠𝑖 = 𝑠𝑖
′ +෍

𝑗=1

𝑛

𝑞𝑗 𝛼𝑖

𝑠1, 𝑠2, … , 𝑠2𝑡
𝑝𝑟𝑜𝑗𝑒𝑐𝑡𝑖𝑜𝑛

{𝑟1, 𝑟2, … 𝑟𝑡}

𝑧
𝑟𝑒𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡

{𝑟1, 𝑟2, … 𝑟𝑡}



Beaver’s Multiplication Triple
Donald Beaver, 1992



Multiplication Triple (MT)

Beaver’s Multiplication Triple is a protocol for secret 
multiplication on additive shared arithmetic circuit.

• Additive shared: A secret 𝑥 is shared by Alice and Bob. Alice has a share 
𝑥0, and Bob has a share 𝑥1, that 𝑥0 + 𝑥1 = 𝑥.

• Arithmetic circuit: Secrets is shared and computed on an arithmetic level 
instead of bit level.

Alice holding secret 𝑥, Bob holding secret 𝑦, they want to 
jointly compute 𝑓(𝑥, 𝑦)



Multiplication Triple (MT)

• Sharing:
• Alice sample a random 𝑥0, let 𝑥1 = 𝑥 − 𝑥0, send 𝑥1 to Bob.
• Bob sample a random 𝑦1, let 𝑦0 = 𝑦 − 𝑦1, send 𝑦0 to Alice.

• Reconstruction:
• There is a secret 𝑧 shared by Alice and Bob, each holding 𝑧0, 𝑧1
• Alice reveal 𝑧0, Bob reveal 𝑧1, both party compute 𝑧 = 𝑧0 + 𝑧1.



Multiplication Triple (MT)

• Addition

Secret addition can be computed locally.
Alice holding secret 𝑥, Bob holding secret 𝑦, they want to jointly compute 
𝑧 = 𝑥 + 𝑦.

• Alice sample a random 𝑥0, let 𝑥1 = 𝑥 − 𝑥0, send 𝑥1 to Bob.
• Bob sample a random 𝑦1, let 𝑦0 = 𝑦 − 𝑦1, send 𝑦0 to Alice.
• Alice holding 𝑥0, 𝑦0 compute 𝑧0 = 𝑥0 + 𝑦0
• Bob holding 𝑥1, 𝑦1 compute 𝑧1 = 𝑥1 + 𝑦1
• Both party reveal shares of 𝑧 and reconstruct

Multiplication by constant numbers can be computed using same method.



Multiplication Triple (MT)

• Multiplication

Alice holding secret 𝑥, Bob holding secret 𝑦, they want to 
jointly compute 𝑧 = 𝑥 · 𝑦.

Let 𝑥 , 𝑦 , [𝑧] denote the shared value of 𝑥, 𝑦, 𝑧
• Assume we can pre-produce random triples:

𝑎, 𝑏, 𝑐

Where 𝑎 · 𝑏 = 𝑐 and 𝑎, 𝑏, 𝑐 are shared by Alice and Bob as 𝑎0, 𝑏0, 𝑐0 and 
𝑎1, 𝑏1, 𝑐1, respectively. Let 𝑎 , 𝑏 , 𝑐 denote the shared value.
(This production can be done in an offline phase using one of the previous 
methods) 



Multiplication Triple (MT)

• Multiplication
To multiply 𝑥  and 𝑦 , we take a new Beaver Triple (i.e. 𝑎 , 𝑏 , 𝑐 ) and:
• Both party compute 𝑥 − 𝑎 = 𝑑 , disclose 𝑑 and reconstruct 𝑑.

• Both party compute 𝑦 − 𝑏 = 𝑒 , disclose 𝑒  and reconstruct 𝑒.
• Both party compute:

𝑧 = 𝑐 + 𝑑 · 𝑏 + 𝑒 · 𝑎 + 𝑑 · 𝑒 ∗

*: Only one party need to add 𝑑 · 𝑒 to his share.
𝑧  is the share of z = 𝑥 · 𝑦. If they don’t need further computation, they 

reconstruct 𝑧.



Multiplication Triple (MT)

• Multiplication: Proof
• Alice

𝑧0 = 𝑐0 + 𝑑 · 𝑏0 + 𝑒 · 𝑎0 + 𝑑𝑒
= 𝑐0 + 𝑥 − 𝑎 · 𝑏0 + 𝑦 − 𝑏 𝑎0 + 𝑥 − 𝑎 𝑦 − 𝑏
= 𝑐0 + 𝑥𝑏0 − 𝑎𝑏0 + 𝑎0𝑦 − 𝑎0𝑏 + 𝑥𝑦 − 𝑏𝑥 − 𝑎𝑦 + 𝑎𝑏

• Bob
𝑧1 = 𝑐1 + 𝑑 · 𝑏1 + 𝑒 · 𝑎1 + 𝑑𝑒
= 𝑐1 + 𝑥 − 𝑎 · 𝑏1 + 𝑦 − 𝑏 𝑎1
= 𝑐1 + 𝑥𝑏1 − 𝑎𝑏1 + 𝑎1𝑦 − 𝑎1𝑏

• Reconstruction
𝑧0 + 𝑧1 = 𝑐 + 𝑥𝑏 − 𝑎𝑏 + 𝑎𝑦 − 𝑎𝑏 + 𝑥𝑦 − 𝑏𝑥 − 𝑎𝑦 + 𝑎𝑏

= 𝑥𝑦



Multiplication Triple (MT)

• Problem: How to distribute MTs without TTP(Trustful Third Party)?
• HE: Homomorphic Encryption
• OLE: Oblivious Linear Evaluation



Multiplication Triple (MT)

• Distribute MTs via HE
• Paillier Homomorphic Encryption for brief:

Let 𝑥, 𝑦 be secrets (in ℤ2𝑙), 𝐸𝑛𝑐 𝑥 , 𝐸𝑛𝑐(𝑦) be ciphertexts using Paillier
encryption.

Then we have:
𝐸𝑛𝑐𝑘 𝑥 + 𝑦 = 𝐸𝑛𝑐𝑘 𝑥 · 𝐸𝑛𝑐𝑘(𝑦)

𝐸𝑛𝑐𝑘 𝑥 · 𝑦 = 𝐸𝑛𝑐𝑘 𝑥 𝑦

i.e.
𝐷𝑒𝑐𝑘 𝐸𝑛𝑐𝑘 𝑥 · 𝐸𝑛𝑐𝑘 𝑦 = 𝑥 + 𝑦

𝐷𝑒𝑐𝑘 𝐸𝑛𝑐𝑘 𝑥 𝑦 = 𝑥 · 𝑦



Multiplication Triple (MT)

• Distribute MTs via HE
• The 2 parties first additively share their inputs:

𝑃0: 𝑥0, 𝑦0, 𝑃1: 𝑥1, 𝑦1
• 𝑃0 samples 𝑟 randomly and compute (which is his share):

𝑧0 = 𝑥0 · 𝑦0 − 𝑟

• 𝑃1 send 𝑃0:
𝐸𝑛𝑐𝑘1 𝑥1 , 𝐸𝑛𝑐𝑘1(𝑦1)

• 𝑃0 send 𝑃1:

𝑑 = 𝐸𝑛𝑐𝑘1 𝑥1
𝑦0
· 𝐸𝑛𝑐𝑘1 𝑦1

𝑥0
· 𝐸𝑛𝑐𝑘1(𝑟)

• 𝑃0’s share:
𝑧1 = 𝑥1 · 𝑦1 + 𝐷𝑒𝑐𝑘1 𝑑 = 𝑥1 · 𝑦1 + 𝑥1 · 𝑦0 + 𝑦1 · 𝑥0 + 𝑟



Multiplication Triple (MT)

• Distribute MTs via OT
• To generate 𝑥 · 𝑦 = 𝑧，observe that we can write:

𝑥 · 𝑦 = 𝑥0 + 𝑥1 · 𝑦0 + 𝑦1 = 𝑥0𝑦0 + 𝑥0𝑦1 + 𝑥1𝑦0 + 𝑥1𝑦1
• 𝑃0 randomly generate 𝑥0, 𝑦0, 𝑃1 randomly generate 𝑥1, 𝑦1
• 𝑥0𝑦0, 𝑥1𝑦1 can be computed locally, so we need to compute 𝑥0𝑦1, 𝑥1𝑦0
• Take the computation of 𝑥0𝑦1 for example, since the other one can be 

computed symmetrically by reversing the parties’ roles.



Multiplication Triple (MT)

• Distribute MTs via OT
• We want to compute 𝑥0𝑦1, but plain 𝑥0𝑦1 known by one party will cause 

leak of information. 
• So we compute the sharing of it. Find 𝑢0, 𝑢1 that:

𝑢0 + 𝑢1 = 𝑥0𝑦1
Which will be held by 𝑃0, 𝑃1 as shared values respectively.



Multiplication Triple (MT)

• Distribute MTs via OT
𝑃0, 𝑃1 start a C-OT(𝑙, 𝑙). In 𝑖-th C-OT:
• 𝑃1 inputs 𝑦1’s 𝑖-th bit: 𝑦1[𝑖] as the choice bit

• 𝑃0 inputs the correlation function 𝑓Δ𝑖 𝑥 = 𝑥0 · 2
𝑖 − 𝑥 𝑚𝑜𝑑 2𝑙

• Every round 𝑃0 samples 𝑠𝑖,0 randomly.

OT𝑠𝑖,0
𝑠𝑖,1 = 𝑥0 · 2

𝑖 − 𝑠0 𝑚𝑜𝑑 2𝑙
𝑦1[𝑖] as Choice

𝑠𝑖,𝑦1[𝑖]



Multiplication Triple (MT)

• Distribute MTs via OT
• Now, 𝑃0 has: {𝑠0,0, 𝑠1,0, 𝑠2,0, … , 𝑠𝑙−1,0}

• Now, 𝑃1 has: 𝑠0,𝑦[0], 𝑠1,𝑦[1], 𝑠2,𝑦[2], … , 𝑠𝑙−1,𝑦[𝑙−1]

• Then 𝑃0 ’s share 𝑢0 = σ𝑖=0
𝑙−1 𝑠𝑖,0

• Then 𝑃1 ’s share 𝑢1 = σ𝑖=0
𝑙−1 𝑠𝑖,𝑦[𝑖]



Multiplication Triple (MT)

• Distribute MTs via OT
Proof (or example):
• 𝑃0 has input 𝑥0 = 1101

• 𝑃1 has input 𝑦1 = 1001

• 0-th OT: 𝑃0 samples 𝑠0,0 = 1000, then 𝑠0,1 = 𝑓Δ,0 𝑠0,0 = 1101 · 1 − 1000

𝑃1 obtains 𝑠0,𝑦[0] = 𝑠0,1 = 0101

• 1-th OT: 𝑃0 samples 𝑠1,0 = 1001, then 𝑠1,1 = 𝑓Δ,0 𝑠1,0 = 1101 · 10 − 1001

𝑃1 obtains 𝑠1,𝑦[1] = 𝑠1,0 = 1001

• …



Comparison & Conclusion
Protocols including OT, GC, GMW, BGW, MT



Comparison:

Circuit 
Type

Parties/
scalability

Communication 
rounds

Computation cost
(offline phase)

sensitivity to 
latency (online)

OT / 2 party; 2-3 rounds;
1-2 in OT extension

/ /

GC Boolean 2 party;
Poor scalability

Constant rounds
(𝑂(𝑛𝑖𝑛𝑝𝑢𝑡))

High in encryption Low due to 
constant rounds

GMW Boolean Multi-party;
Scales well

Logarithmic in circuit 

depth(𝑂 log 𝑛𝑑𝑒𝑝 )

Low High due to 
many rounds

BGW Arithmetic Multi-party;
Scales well

Linear in circuit 
depth(𝑂(𝑛𝑑𝑒𝑝))

High in 
reconstruction

High due to 
many rounds

MT Arithmetic 2 party;
Scales well

Logarithmic in Mul 
gates(𝑂(log 𝑛𝑀𝑢𝑙))

High (preprocess) in 
generating triples

Moderate 
sensitivity
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