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Abstract—Transport Layer Security (TLS) is one of the most widely used Internet protocols for secure communications. TLS 1.3, the

next-generation protocol, is currently under development, with the latest candidate being draft-18. For flexibility and compatibility, TLS

supports various ciphersuites and offers configurable selection of multiple protocol versions, which unfortunately opens the door to

practical attacks. For example, although TLS 1.3 is now proven secure separately, coexisting with previous versions may be subject to

backwards compatibility attacks. In this paper, we present a formal treatment of the multi-ciphersuite and backwards-compatibility

security of TLS 1.3 (specifically, draft-18). We introduce a multi-stage security model, covering all known kinds of compositional

interactions (w.r.t. ciphersuites and protocol versions) and reasonably strong security notions. Then we dissect the cross-ciphersuite

attack regarding TLS 1.2 in our model, and show that the TLS 1.3 handshake protocol satisfies the multi-ciphersuite security,

highlighting the strict necessity of including more information in the signature. Furthermore, we demonstrate how the backwards

compatibility attack by Jager et al. can be identified owing to our model, and prove that the handshake protocol can achieve our desired

strong security if certain countermeasures are adopted. Our treatment is also applicable to analyzing other protocols.

Index Terms—Transport Layer Security, key reuse, security model, multi-ciphersuite security, backwards-compatibility security
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1 INTRODUCTION

TRANSPORT Layer Security (TLS) [1], as the descendant of
Secure Sockets Layer (SSL), is a cornerstone of Internet

security and the basis of other protocols like HTTPS. TLS has
been generally recognized as one of the Internet’s most
widely deployed cryptographic protocols to protect the data
transmitted between two communicating peers. For exam-
ple, Fig. 1 shows the secured connection between a client and
a server, where TLS uses a handshake to establish cipher set-
tings as well as a shared key and then the communication is
encrypted using that key.

Since TLS has been pervasively used to provide end-to-
end confidentiality, integrity, and authentication for com-
munications over insecure networks, the security of TLS [2]
has been analyzed extensively by the research community,
with TLS and its implementations being the target of a
plethora of cryptographic attacks [3], [4], [5], [6], [7], [8], [9],
[10], [11], [12], [13]. An interesting and intuitive (yet

possibly slightly informal and outdated) introduction to the
security of TLS can be found in [14]. So far, the various flaws
identified in TLS 1.2 [3], [4], [5], [8], [10], [13] have necessi-
tated an open standardization process of the next-genera-
tion protocol, i.e., TLS 1.3, for which an analysis-before-
deployment design paradigm has been effected. Since Apr.
2014, the TLS Working Group of the Internet Engineering
Task Force (IETF) has been working on TLS 1.3, and at the
time of writing (as of Feb. 2017) the current candidate is
draft-ietf-tls-tls13-18 [15], or draft-18 for short.

TLS consists of two primary components, the handshake
protocol (for authentication and key agreement) and the
record protocol (for traffic protection only); in this paper, we
focus on the former (specifically, the handshake protocol
specified in draft-18), as it is relatively more complicated
and thus more subtle when security is concerned:

� For the sake of flexibility, TLS supports various
combinations of cryptographic algorithms officially
known as ciphersuites. Currently, TLS 1.2 has more
than 300 ciphersuites registered at the Internet
Assigned Numbers Authority (IANA) [16], e.g.,
TLS_ECDH_RSA_WITH_AES_128_CBC_SHA256
indicates the combination of the ECDH handshake,
the RSA digital signature, the AES-128 encryption
in CBC mode, the SHA256-based PRF, and the
SHA256-based MAC algorithms.

� Likewise, TLS provides a built-in mechanism for ver-
sion negotiation between communicating peers
potentially supporting different versions of TLS. For
example, according to an up-to-date survey [17], as of
Feb. 2017, TLS 1.2, 1.1, and 1.0 are supported by 84.2,
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81.5, and 95.2 percent of the most popular web sites
(according to alexa.com’s statistics), respectively. TLS
takes compatibility into consideration by offering a
configurable selection of multiple protocol versions.

1.1 Motivation: The Key Reuse Problem

To simplify digital certificate management, in practice a
server (also a client, but not the focus of this paper) often
uses the same long-term public/private key pair across
multiple protocol ciphersuites and versions, which is
known as key reuse. This seems beneficial as it reduces the
server’s certificate storage (and also its clients’ certificate
verifications). However, key reuse may open the door to
security breaches, which we regard as the price for the flexi-
bility and compatibility mentioned above. For example, the
well-known key reuse attack across ciphersuites on TLS 1.2 was
identified in [4], exploiting the interaction between two dif-
ferent key exchange protocols (DH and ECDH). Specifically,
signed elliptic curve ephemeral DH parameters may be
interpreted as valid signed finite field ephemeral DH
parameters, which allows an adversary to impersonate a
server after collecting 240 signed elliptic curve keys.

For another example, although users may have the best
intentions to use only the most up-to-date, vulnerability-
free version of TLS, the mere support for previous versions
may have serious ramifications such as the key reuse attack
across versions, a.k.a. the backwards compatibility attack
[18]. In 2015, Jager et al. [19] presented an RSA padding ora-
cle attack [20] against TLS 1.3 draft-07 (though TLS 1.3 does
not really support RSA key exchange); specifically, in a set-
ting where the server uses the same RSA certificate for TLS
1.3 and a previous version, an adversary can impersonate a
server by using a vulnerable TLS-RSA server implementa-
tion as a “signing oracle” to compute valid signatures for
messages chosen by him. Moreover, such an attack can be
applied to the Quick UDP Internet Connections (QUIC) pro-
tocol, too. Very recently, by exploiting the protocol flaws in
SSLv2, a practical cross-version key reuse attack was dem-
onstrated in [21], which decrypts modern TLS connections
and also affects the QUIC protocol. As many as 11.5 million
(33 percent) HTTPS servers were vulnerable to this attack.

We make the observation that the above attacks follow a
common scenario that messages signed or decrypted using
long-term keys in one ciphersuite could be misused in other
ciphersuites or older protocols, and that such attacks have
been insufficiently captured in existent security models.
This motivates us to formally revisit the security notions
called multi-ciphersuite security and backwards-compatibility

security, and accordingly analyze the “actual” security of
the TLS protocol in a systematic and pragmatic manner.
Our approach is in sharp contrast to prior research efforts
on the provable security of TLS, which either only considers
a “fixed” protocol mode at a time or considers multiple
modes with “independent” cryptographic parameter set-
tings. We envision that our security treatment concerning
the key reuse across ciphersuites and versions of the TLS
protocol, as well as the insights gained from this study, can
offer constructive inputs to making the next-generation TLS
(and protocols alike) more dependable.

1.2 Related Work

Studies on the security of cryptographic protocols (and par-
ticularly on TLS) are extensive. Next, we review those
closely related to our work from three aspects.

Key Reuse. Theoretically, the security proof of a cryp-
tographic scheme is based on the ideal assumption that
the scheme employs randomly chosen keys that are not
employed elsewhere. In practice, especially in the context of
public key protocols, however, simultaneously using a key
across different primitives is “operationally” attractive due
to reduced costs (e.g., in certificate application, storage, and
verification). Key reuse generally exists in the real world.

Haber and Pinkas [22] initiated the formal security study
on key reuse. They defined the joint security of combined
public key schemes, and analyzed the combinations of a pub-
lic key encryption scheme and a signature scheme w.r.t. key
reuse. Later, Coron et al. [23] showed that Probabilistic Sig-
nature Scheme (PSS) enables one to safely use the same RSA
key pair for both encryption and signature. Komano and
Ohta [24] proposed new Encryption & Signature (ES)
schemes based on Optimal Asymmetric Encryption Padding
(OAEP) and Rapid Enhanced-security Asymmetric Crypto-
system Transform (REACT). Paterson et al. [25] revisited the
topic of joint security and proposed a general construction of
a combined public key scheme using IBE as a component in
the standard model. Degabriele et al. [26] showed the joint
security of elliptic curve based signature and encryption
algorithm in the Europay-Mastercard-Visa (EMV) standard.
Recently, Bergsma et al. [27] showed that the Secure Shell
(SSH) protocol is secure even if the same signing key is used
acrossmultiple ciphersuites.

In parallel with the above positive results are (inevitably)
the negative research findings. As mentioned in Section 1.1,
key reuse has incurred vexing and recurring problems, par-
ticularly for real-world protocols like TLS [4], [19], [21]. In
[26], Degabriele et al. also presented a theoretical attack on
RSA-based combined algorithms in EMV, showing how
adversarial access to a partial decryption oracle can be used
to forge signatures on freely chosen messages.

Provable Security of TLS 1.2.Although TLS 1.2 [1] was stan-
dardized in 2008, the progress on formallymodeling the secu-
rity of the TLS handshake protocol has been slow. The main
reason is that in TLS 1.2 the encryption of the final Finished
messages in the TLS Handshake Layer leads to a subtle inter-
leaving of the data encryption in the TLSRecord Layer,which
violates the basic principle of key indistinguishability in clas-
sical securitymodels such as the Bellare-Rogaway one [28].

In 2012, Jager et al. [29] put forth a new notion called
Authenticated and Confidential Channel Establishment

Fig. 1. TLS containing the handshake and the record protocols is primarily
used with TCP to secure communications between a client and a server.
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(ACCE) to precisely capture the security properties expected
from TLS in practice, and presented the first complete cryp-
tographic security proof for TLS-DHE in the standardmodel.
Subsequently, other TLS handshake modes were mostly
shown secure based on the ACCE model. For example,
Krawczyk et al. [30] proved the security of TLS-RSA with
server-only authentication ciphersuite without having to
assume the IND-CCA security for RSA PKCS #1 v1.5. Giesen
et al. [31] analyzed the renegotiation security of TLS in an
extended ACCEmodel, while Li et al. [32] evaluated the var-
iants of TLS with pre-shared keys and proved their security
in another extendedACCEmodel.

In 2014, Bhargavan et al. [33] proposed new security defi-
nitions to analyze TLS 1.2, and reduced the security of the
TLS handshake protocol to agile assumptions on the con-
structions used for signatures, key encapsulation mecha-
nisms (KEMs), and PRFs. Recently, Dowling and Stebila [34]
presented a formal treatment of the negotiation of cipher-
suites and versions in TLS 1.2. However, this work relied on
an idealistic assumption that long-term keys are indepen-
dent for each sub-protocol, i.e., there is no key reuse across
different ciphersuites or versions.

Provable Security of TLS 1.3. The next-generation TLS, ver-
sion 1.3, is currently under development [15]. In 2015,
Dowling et al. [35] showed that the handshake protocols in
two earlier candidates, draft-05 and draft-dh, achieve the
main goal of providing secure authenticated key exchange
under a modified multi-stage model introduced in [36].
Later, they continued in [37] to analyze the TLS 1.3 draft-10
full and pre-shared key handshake protocols. Recently,
Krawczyk and Wee [38] presented the OPTLS key exchange
protocol, serving as a basis for analyzing the TLS 1.3 hand-
shake protocol. Concurrently, Cremers et al. [39] and Li
et al. [40] focused on the compositional security of the TLS
handshake protocol from independent points of view. More
specifically, Cremers et al. gave a comprehensive security
analysis for the interaction of different handshake modes in
draft-10 based on symbolic analysis tools, while Li et al. pre-
sented the formal treatment of multiple handshakes security
of draft-10 based on computational complexity. In parallel
with their work, Bhargavan et al. [41] studied the down-
grade resilience as a formal security notion for key exchange
protocols and analyzed the downgrade security of draft-10.

1.3 Summary of Technical Results

TLS is one of the most widely-used cryptographic protocols
on the Internet. However, it seems that for TLS, flexibility
and compatibility are supported at the cost of potentially
introducing key reuse attacks across ciphersuites and proto-
col versions. Most provable security analyses of TLS only
consider a single ciphersuite/version at a time. In this
work, we aim at addressing this situation by systematically
investigating the multi-ciphersuite and backwards-compati-
bility security of the TLS 1.3 (specifically, draft-18) hand-
shake protocol. Our technical contributions are threefold.

SecurityModel forMulti-Ciphersuite and Backwards-Compati-
bility Handshake Protocols. Our goal is to define a sufficiently
rich model for the TLS 1.3 handshake protocol, covering all
kinds of compositional interactions of different ciphersuites
and protocol versions, and providing reasonably strong
security guarantees. Our model is built on the definition of

multi-stage key exchange protocols [35], [36], as it is liberal
enough to capture the TLS 1.3 handshake protocol. In order
to cover various ciphersuites and protocol versions, we intro-

duce two Boolean variables dU;fc;dg and dU;fc;dg, which are

used to represent whether party U reuses the same long-term
keys across ciphersuites and protocol versions, respectively.

Our model additionally provides the adversary with a
featured BCAux oracle, by which the adversary can interact
with old versions and obtain the operation results of the
reused long-term private key. Our model also features cer-
tain adaptations w.r.t. the oracle queries summarized as fol-
lows. First, to accommodate multi-ciphersuite cases in the
Send query, the adversary’s capability of modifying the
ciphersuite list is considered. Second, to capture the key
reuse attacks in the Corrupt query, when a long-term private
key is corrupted, other sessions (in different ciphersuites or
versions) that use the same private key are also considered
corrupted. Third, in the Test query, to exclude trivial attacks
and capture admissible adversarial interaction, a flag lost is
introduced.

Multi-Ciphersuite Security of the TLS 1.3 Handshake
Protocol. We provide the first proof that TLS 1.3 is multi-
ciphersuite secure. In TLS 1.3, since the RSA key transport
algorithm has been deprecated and there does not exist any
public key encryption scheme, our multi-ciphersuite analy-
sis only addresses the signature schemes. In particular, via a
modular approach, we show that if a single ciphersuite TLSc
with additional access to a signing algorithm is secure in the
multi-stage security model, and another ciphersuite TLSd
sharing long-term keys with TLSc can be simulated using
this signing algorithm, then the combination of the two
ciphersuites TLSc and TLSd is secure even if keys are
reused, and thus prove the multi-ciphersuite security of
TLS 1.3. We also identify the cross-protocol attack by
Mavrogiannopoulos et al. [4] on TLS 1.2 in our security
model, which highlights the strict necessity of including
more information in the signature.

Backwards-Compatibility Security of the TLS 1.3 Handshake
Protocol. We recall the backwards compatibility attack of
Jager et al. [19] against TLS 1.3 draft-07, and explain with
our model why draft-07 is vulnerable. Then we check
whether the countermeasures against Bleichenbacher’s
attack [20] that are recommended in the standards [1], [42],
[43] are actually acceptable. In fact, Jager’s attack is an utili-
zation of Bleichenbacher’s adaptive chosen ciphertext attack
against RSA PKCS #1 v1.5 [20]. With the countermeasures
[1], the adversary cannot differentiate the padding error
from the decryption error (as the decryption result is hidden
by the uniform error message), and thus cannot forge signa-
tures without the secret key, which negates the backwards
compatibility attacks. Finally, we prove that the TLS 1.3
draft-18 handshake protocol achieves multi-ciphersuite and
backwards-compatibility security if an older version (such
as TLS 1.2) has been upgraded with the countermeasures
recommended in the standard [1]. The core of our proof lies
in the security of the signature scheme with an auxiliary
decryption algorithm BCFunc instantiated by TLS-RSA in
the older TLS version.

Our model-based treatment is also applicable to analyz-
ing other real-world security protocols. For example, QUIC
is a multi-stage protocol only supporting the RSA signature
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and suffers from a cross-protocol attack in the presence of a
“Bleichenbacher-oracle” provided by a TLS 1.2 server. By
learning from the countermeasures for TLS, one can also
eliminate potentially devastating security impacts on QUIC.

1.4 Comparison with Related Work

In 2014, Bergsma et al. [27] introduced a generic multi-
ciphersuite composition framework and showed that the
Secure Shell (SSH) protocol is multi-ciphersuite secure.
However, their framework was based on the ACCE model,
which treats the key exchange and authenticated encryption
as a single monolithic object and is not suitable for the anal-
ysis of TLS 1.3. Moreover, they did not consider key reuse
scenarios across versions.

Later, based on the multi-ciphersuite setting in [27],
Dowling and Stebila [34] gave a formal treatment of cipher-
suite and version negotiation for the TLS protocol w.r.t. ver-
sions up to 1.2, but their work relied on the assumption that
each ciphersuite has independent long-term keys. They did
not take into consideration key reuse scenarios across either
ciphersuites or versions, though in the real world such sce-
narios widely exist.

Recently, Bhargavan et al. [41] put forward a methodol-
ogy to analyze the downgrade resilience of real-world key
exchange protocols (TLS, SSH, IPSec, etc). Their work is
motivated by the downgrade attacks, where an adversary
interferes with the negotiation of ciphersuites or versions
between two innocent parties so that they end up with a
ciphersuite or version, which is weaker than the one they
would have chosen and is possibly vulnerable. In this
paper, instead of such downgrade problem, we focus on the
key reuse problem, where different ciphersuites or versions
share the same long-term key. Moreover, the downgrade
resilience studied in [41] can be technically understood (and
compared with our security notions) on two levels:

� On the ciphersuite level, downgrade resilience resem-
bles multi-ciphersuite security. However, the mode
set based approach in [41] cannot reflect the subtle
interactions between ciphersuites due to the key
reuse, nor the negative impact caused by such interac-
tions. Particularly, RSA key reuse is excluded in [41]
(as noted in [41] right before Theorem 7).

� On the protocol version level, downgrade resilience
is quite different from our backwards compatibility
security. In fact, Bhargavan et al. [41] focus on nego-
tiating the highest version supported by both com-
munication peers, while our goal is to ensure that
the existence of old versions does not compromise
the security of the current version.

1.5 Paper Organization

The rest of this paper is organized as follows. Preliminaries
are introduced in Section 2, followed by the TLS 1.3 draft-18
full handshake protocol outlined in Section 3. Section 4
presents our security model for multi-ciphersuite and back-
wards-compatibility handshake protocols. In Section 5, a
multi-ciphersuite security proof of TLS 1.3 draft-18 is given.
Section 6 identifies the backwards compatibility attack on
TLS 1.3 draft-07 [19] with our security model, and presents
a backwards-compatibility security proof of TLS 1.3 with

TLS 1.2 (as long as TLS 1.2 adopts the proposed fixes in the
standard [1]). Finally, Section 7 concludes this paper.

2 PRELIMINARIES

In this section, we briefly recall some common primitives
and definitions that our analysis employs, where a $ A
denotes the action of independently sampling a uniformly
random element from a set A, � denotes the security param-
eter, and neglð�Þ denotes a function negligible in �.

2.1 Collision-Resistant Hash Function

A hash function Hash [44] is a deterministic function
z ¼ Hashðk;mÞ, taking as inputs a key k 2 KHash and an

arbitrary bit string m, and returning a hash value z in the

hash space f0; 1glð�Þ (with lð�Þ polynomial in �).

Definition 1. We say that a keyed hash function Hashðk;mÞ is
collision resistant, if for all polynomial-time algorithms A, it
holds that

AdvCOLL
Hash ¼ Pr½k $ KHash; ðm;m0Þ  AðkÞ :

m 6¼ m0 ^ Hashðk;mÞ ¼ Hashðk;m0Þ� � neglð�Þ:

2.2 Pseudo-Random Function

A pseudo-random function (PRF) [45] is a deterministic
function z ¼ PRFðk;mÞ, taking as inputs a key k 2 KPRF and
an arbitrary bit stringm, and returning a string z 2 f0; 1g�.

To define security, we consider the following game
between an adversaryA and a challenger.

1) The challenger samples k uniformly at random. The
adversary A may adaptively make oracle queries
PRFðk; �Þ for arbitrary values m and obtain the corre-
sponding PRFðk;mÞ.

2) The adversary A outputs m0 that was never queried
to PRFðk; �Þ. The challenger samples b $ f0; 1g and
returns PRFðk;m0Þ to A if b ¼ 0, or a random value
uniformly sampled from the range of the function
otherwise.

3) The adversary continues querying to PRFðk; �Þ, sub-
jected only to the restriction that the submitted bit
string is not identical tom0.

4) Finally, A outputs a guess b0. If b ¼ b0 the adversary
wins.

Definition 2. We say that a PRF is a secure pseudo-random
function, if any adversary has an advantage of at most negl(�)
to distinguish the PRF from a truly random function, i.e.,

AdvPRF�secPRF ¼ Pr½b ¼ b0� � 1

2

����
���� � neglð�Þ:

2.3 The Pseudo-Random Function Oracle
Diffie-Hellman Assumption

The pseudo-random function oracle Diffie-Hellman (PRF-
ODH) assumption was introduced by Jager et al. [29]. Let G
be a group of prime order q and g a generator of G. Let PRF
be a deterministic function z ¼ PRFðX;mÞ, taking as input
a key X 2 G and some bit string m 2 f0; 1g�, and returning
a string z 2 f0; 1g�.

We consider the following game between an adversary A
and a challenger.
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1) The adversary A outputs a valuem 2 f0; 1g�.
2) The challenger samples u; v $ Zq, z1  $ f0; 1g� uni-

formly at random and sets z0 ¼ PRFðguv;mÞ. Then it
tosses a coin b 2 f0; 1g and returns zb, g

u and gv to the
adversary.

3) The adversary may query a pair ðX;m0Þ 2 ðG; f0; 1g�Þ
with X 6¼ gu to the challenger. The challenger replies
with PRFðXv;m0Þ.

4) Finally, A outputs a guess b0.

Definition 3. We say that the PRF-ODH problem is hard for
PRF with keys from G, if for all polynomial-time algorithms A,
it holds that

AdvPRF-ODH
PRF;G ¼ Pr½b ¼ b0� � 1

2

����
���� � neglð�Þ,

where the probability is over the random coins of A and the
random choices of u; v.

2.4 Signature Scheme

A digital signature scheme SIG ¼ ðSig:Gen;Sig:Sign;Sig:
VerifyÞ with message space Mð�Þ consists of the standard
algorithms: key generation Sig:Genð1�Þ ! ðpk; skÞ, signing

Sig:Signðsk;mÞ ! s, and verification Sig:Verifyðpk;m; sÞ
! f0; 1g. It is said to be correct if Sig:Verifyðpk;m;Sig:Sign
ðsk;mÞÞ ¼ 1 for all ðpk; skÞ  Sig:Genð1�Þ andm 2Mð�Þ.

To define security [46], we consider the following game
between an adversaryA and a challenger.

1) Setup Phase. The challenger chooses ðpk; skÞ  Sig:
Genð1�Þ.

2) Signing Phase. The adversary A sends signature
querymi 2 M and receives si ¼ Sig:Signðsk;miÞ.

3) Forgery Phase. A outputs a message m and its signa-
ture s. If m is not queried during the Signing Phase
and Sig:Verifyðpk;m; sÞ ¼ 1, the adversary wins.

Definition 4. We say that a signature scheme SIG is existen-
tially unforgeable under adaptive chosen-message attacks
(EUF-CMA), if for all adversaries A, there exists a negligible
function neglð�Þ such that

AdvEUF-CMA
Sig ¼ Pr½A wins� � neglð�Þ:

3 THE TLS 1.3 DRAFT-18 FULL HANDSHAKE

PROTOCOL

In this section we describe the TLS 1.3 draft-18 full hand-
shake protocol. Fig. 2 shows the message flow and relevant
cryptographic computations for the full handshake in draft-
18, where the messages are explained below:

� ClientHello/ServerHello: contains the sup-
ported versions and ciphersuites for negotiation pur-
poses, nonce rc (resp. rs) with bit length l ¼ 256, as
well as extensions (e.g., supported groups, signature
algorithms, and key share). In TLS 1.3, the supported
group is either an elliptic curve group (e.g., secp256r
and secp384r1), or a finite field group (e.g., ffdhe2048
and ffdhe3072); the supported signature algorithm is
either RSASSA-PKCS1-v1_5, RSASSA-PSS, ECDSA,
or EdDSA.

� cipher_suites/cipher_suite: contains a list
of cryptographic options supported by the client
(resp. a single ciphersuite selected by the server
from the list). These messages are included in the
ClientHello/ServerHello messages. Besides,
the ciphersuite contains the hash algorithm used
with HKDF, either SHA256 or SHA384.

� client_key_shares/server_key_share: con-
tains a list of ephemeral Diffie-Hellman public val-
ues X ¼ gx (resp. a single Y ¼ gy) for the groups
(resp. a single group) selected by ClientHello/
ServerHello, used to compute the shared secret
SS. These messages are included in the Hello

Extensions field.
� EncryptedExtensions: contains more extensions,

this is the first message that is encrypted with stshs.
� CertificateRequest: indicates the server requests

for client authentication using a certificate.
� ServerCertificate/ClientCertificate: contains

the public key certificate of the respective party.
� ServerCertificateVerify/ClientCertific-

ateVerify: contains a digital signature over the
entire handshake hash.

Fig. 2. The full (EC)DHE handshake protocol in TLS 1.3 draft-18. {m} indi-
cates a message m encrypted using AEAD with the sender’s handshake
traffic secret ctshs or ctshs, and [m] indicates a message m encrypted
using AEAD with sender’s application traffic key ctkapp or stkapp. m� indi-
cates a message that can be transmitted optionally. m~ indicates a mes-
sage that is only sent when later resumption shall be allowed.
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� ServerFinished/ClientFinished: contains the
HMAC evaluated on the entire handshake messages
till this calculation with the server finished key SFK
or the client finished key CFK, respectively.

� NewSessionTicket: creates a pre-shared key
(PSK) binding between the resumption master secret
RMS and the ticket label.

In brief, the TLS 1.3 full handshake protocol provides a
method for participants with multiple configurations to
agree on a uniform ciphersuite and establish a common
secret session key. In order to provide better protection for
secure communications, the session messages are encrypted
using the symmetric encryption scheme AEAD (authenti-
cated encryption with associate data) with different keys.
All the messages in ‘{}’ are encrypted with the sender’s
handshake traffic secret ctshs or stshs derived from the
handshake secret HS, and all the messages in ‘[]’ are
encrypted with the sender’s application traffic key ctkapp or
stkapp derived from the master secret MS.

4 MULTI-CIPHERSUITE AND

BACKWARDS-COMPATIBILITY SECURITY

OF THE HANDSHAKE PROTOCOL

In this section, we revisit the notions of multi-ciphersuite
and backwards-compatibility security along the lines of the
seminal paper of Bellare and Rogaway [28]. Our formal
security model is inspired by the notation used by Dowling
et al. [35] and Bergsma et al. [27].

4.1 Overview

In the multi-ciphersuite setting, we need to consider many
different ciphersuites with different algorithms, so we
acquire amulti-ciphersuite handshake protocol NPjj~SP by first
running a negotiation protocol NP, which outputs a cipher-
suite choice c (where c 2 f1; . . . ; nSPg and nSP ¼ j~SPj), and
then running a sub-protocol SPc 2 ~SP, where ~SP represents
different ciphersuites. In addition, our setting supports mul-
tiple protocol versions and allows key reuse across versions.

Different from the basic setting, owing to the fact that an
execution includes multiple ciphersuites and protocol ver-
sions, our model allows more complex and more compre-
hensive replies to the oracle queries. In particular, for the
Send query, the adversary’s capability of modifying the
ciphersuite list should be considered; for the Corrupt query,
in order to capture the key reuse attacks, the queried party’s
specific ciphersuite identifier should be considered; for the
Test query, since trivial attacks need to be excluded, a flag
lost should be added to the security model to capture
admissible adversarial interaction. Besides, in order to
obtain comprehensive security guarantees for multi-cipher-
suite and backwards-compatibility handshake protocols,
we additionally give the adversary access to a BCAux query.
Finally, two Boolean variables dU;fc;dg and dU;fc;dg are intro-
duced to describe the case of long-term keys reuse across
ciphersuites and versions, respectively.

For the analysis of TLS 1.3, some adaptations of the secu-
rity model are necessary and beneficial. In TLS 1.3 draft-18,
the NewSessionTicketmessage used for session resump-
tion is encrypted with the handshake’s application traffic
key, which provides a “check value” allowing the adversary

to test whether a given key is “real” or “random”, and
makes it impossible to prove the security of TLS in any key
indistinguishability based security model. In order to
exclude such issues, in our model, the adversary is
prompted to decide whether this session should be tested
or not when a session key is established. If tested, the ses-
sion key is set to be either real or random, and then the pro-
tocol continues with this specific value in the rest of the
execution, which ensures the consistency of the session key
and bypasses the problem of being a “check value”.

4.2 Notation

We denote a set of parties as U , and each party U 2 U is a
(potential) protocol participant in the system. Following
[27], we also use the variable dU;fc;dg to indicate whether the
party U reuses the same long-term keys for SPc and SPd,
where SPc, SPd 2 ~SP. Besides, in order to capture the key
reuse attacks across multiple versions, the variable dU;fc;dg is
introduced to represent whether party U reuses the same
long-term keys for SPc in the current version (TLS 1.3 draft-
18) and SPd in an old version (such as TLS 1.2), where only
SPc 2 ~SP. Each party U is associated with a long-term pri-
vate/public key pair (skU;c, pkU;c) for each ciphersuite SPc in

the current version, and (skU;c, pkU;c) for each ciphersuite

SPc in an old version. Hence, dU;fc;dg ¼ 1 iff (skU;d, pkU;d) =

(skU;c, pkU;c), and dU;fc;dg ¼ 1 iff (skU;d, pkU;d) = (skU;c, pkU;c).
Note that dU;fc;dg (dU;fc;dg) is symmetric in c and d.

In our formulation, a session is an execution of the proto-
col, and each party can concurrently or subsequently execute
multiple sessions of the protocol. A party’s long-term keys
are shared by each session of this party, which is uniquely
identified using a label label 2 LABELS ¼ U � U �N. The
kth local session owned by identityU with the intended com-
munication partner V can be presentedwith session label (U ,
V , k). Besides, parties can establish multiple keys in different
stages of a session, and the key of some stage can be used to
derive the next stage key. We also maintain a session list ListS
to record each session. One record contains the following
entries, and the values in ‘[ ]’ indicate the default/initial
values:

� label 2 LABELS: the session label.
� U 2 U: the session owner.
� V 2 ðU [ f�gÞ: the intended communication partner,

where the symbol ‘*’ stands for “unknown identity”.
� role 2 finitiator; responderg: the session owner’s role

in this session.
� c 2 f1; . . . ; nSP;?g: the identifier of the negotiated

ciphersuite.
� stexec 2 ðRUNNING [ ACCEPTED [ REJECTEDÞ:

the state of execution [running0], where RUNNING ¼
frunningi ji 2 Ng, ACCEPTED ¼ facceptedi ji 2 Ng;
REJECTED ¼ frejectedi ji 2 Ng.

� stage2 f0; . . . ;Mg: the current stage [0], where M is
the maximum stage and stage is incremented to i
when stexec reaches acceptedi (resp. rejectedi).

� auth 2 AUTH 	 funauth; unilateral;mutualgM: the
authentication type of each stage from the supported
authentication type set AUTH, where M is the maxi-
mum stage and authi denotes the authentication
type in stage i > 0.
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� sid 2 ðf0; 1g� [ f?gMÞ: the session identifier ½ð?ÞM�,
which is determined by the incoming and outgoing
messages for the session, where sidi denotes the ses-
sion identifier in stage i > 0.

� cid 2 ðf0; 1g� [ f?gMÞ: the contributive identifier
½ð?ÞM�, where cidi denotes the contributive identifier
in stage i > 0.

� K 2 ðf0; 1g� [ f?gMÞ: the established session key

½ð?ÞM�, where Ki denotes the established session key

in stage i > 0.
� stkey 2 ffresh; revealedgM: the state of the session key

½ðfreshÞM�, where stkey;i denotes the state of the ses-

sion key in stage i > 0.

� tested 2 ftrue; falsegM: the test indicator ½ðfalseÞM�,
where testedi ¼ true denotes that Ki has been tested.

As usual, if we add a partially specified record (label, U , V ,
role, c, auth) to ListS , then the other record entries are set to
their default values. Besides, in order to identify sessions of
honest parties, which are currently not partnered according
to the (full) session identifiers but indicate the key being
entirely based on an honest peer’s contribution, we also
adopt the notion of contributive identifiers as in [35].

4.3 Adversarial Interaction

We consider a probabilistic polynomial-time adversary A
who controls the communications between all parties, with
the ability of interception, injection, and dropping mes-
sages. Moreover, following [36] we also distinguish differ-
ent levels of the following three independent security
aspects of a handshake protocol: forward secrecy, authenti-
cation, and key dependence. The adversary A interacts with
the protocol via the following oracle queries:

-NewSession (U , V , role, auth): Creates a new session for
participant U with the role role having V as the intended
partner (V ¼ � if not specified explicitly), aiming at the
authentication type auth. Generate and return a unique new
label and add (label, U , V , role, auth) to ListS .

-Send (label, m): Sends a message m to the session with
label. Check whether there is a record (label, U , V , role, c,
stexec, stage, auth, sid, cid, K, stkey, tested) in ListS , if not,
return ?. Otherwise, take the message m as input to run the
protocol on behalf of U , return the response and the
updated execution state label:stexec. As a special case,
the adversary is allowed to initiate a session if label.role ¼
initiator and m ¼ init (without any input message and with
an ordered ciphersuite list ~cs as the response).

If the execution state changes to acceptedi for some stage
i during the protocol execution, the protocol execution is
immediately suspended and acceptedi is returned to the
adversary. Later, the adversary can trigger the protocol
resumption by a special Send(label, continue) query. This
gives the adversary the ability to test a session key before it
may be used in later stages and thus cannot be tested any-
more for excluding trivial attacks.

Besides, in order to exclude trivial attacks, we need to
consider the following subcases when the execution state
label.stexec changes to acceptedi for some stage i.

Case 1: There is a record (label0, V ,U , role0, c0, st0exec, stage
0,

auth0, sid0, cid0, K0, st0key, tested
0) in ListS with label.sidi ¼

label0:sid0i and label0:st0key ¼ revealed. Then for the key inde-
pendence, label.stkey;i is set to revealed, whichmeans the ses-
sion keys of partnered sessions should be considered
revealed, whereas for the key dependence, all label.stkey;i0
(i0 
 i) are set to revealed, which means all subsequent keys
are potentially available for the adversary.

Case 2: There is a record (label0, V ,U , role0, c0, st0exec, stage
0,

auth0, sid0, cid0, K0, st0key, tested
0) in ListS with label.sidi ¼

label0:sid0i and label0:tested0i ¼ true. Then we set label.Ki ¼
label0:K0i and label.testedi ¼ true.

Case 3: The intended communication partner V of the
session with label is corrupted. Then we set label.stkey;i ¼
revealed.

-Reveal (label, i): Provides label.Ki, the i-stage session
key of the session label to the adversary.

If there is no record label in ListS , or i > label:stage, or
label.testedi ¼ true, then return ?. Otherwise, set label.stkey;i
to revealed and provide the adversarywith label.Ki.

If there is a record label0 in ListS with label.sidi= label0:sid0i
and label0.stage0 
 i, then label0:st0key is set to revealed
as well.

For the key dependence, since all subsequent keys in the
same session label depend on the revealed key, label:stkey;j is
set to revealed for all j > i if label:stkey;i ¼ revealed. For the
same reason, if a partnered session label0 with label0.sidi

0 ¼
label.sidi has label0.stage0 ¼ i, then label0.st0key;j is set to
revealed for all j > i. However, note that if label0.stage0 > i,
then label0.st0key;j (j > i) is not considered revealed by this
query since it has been accepted previously, i.e., prior to
label.Ki being revealed in this query.

-Corrupt (U , c): Provides skU;c, the party U’s long-term
private key for the ciphersuite SPc to the adversary. If for-
ward secrecy is not provided, label.stkey;i is set to revealed
for each session label owned by U with the negotiated SPc,
where i 2 f1; . . . ;Mg. Besides, if there exists d satisfying
dU;fc;dg ¼ 1 (dU;fc;dg ¼ 1 ), label0.stkey;i is set to revealed for
each session label0 owned by U with the negotiated cipher-
suite SPd (SPd). In the case of stage-j forward secrecy,1

label.stkey;i is set to revealed only if i < j or if i >
label:stage, which means that the session keys before the
jth stage as well as the keys that have not yet been estab-
lished are potentially disclosed.

-BCAux(U , c, m): Provides a private key operation
result on the message m to the adversary. If there exists d
satisfying dU;fc;dg=1, return the operation result using U’s
long-term private key of ciphersuite SPd in an old version.
Otherwise, return ?. This query will trigger the execution
of specific function BCFunc and model adversary’s han-
dling of key reuse across versions. In detailed analysis,
BCFunc represents specific signing algorithm or decryp-
tion algorithm.

-Test (label, i): Provides the real session key of stage i in
the session with label or a random value according to the
test bit btest.

If there is no record label in ListS or if label.stexec 6¼
acceptedi, return ?. If there is a record label0 in ListS with

1. As defined in [36], in stage-j-forward-secure protocols, stage-j
forward secrecy means that session key Ki established at some stage i 

j remains secure when the involved long-term private key exposed,
whereas keys at stages i < j become insecure.
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label0:sid0i ¼ label.sidi and label0:st0exec 6¼ acceptedi, the flag
lost is set to true. This indicates that we only allow the
adversary to test the sessions which have been accepted but
not used yet. In addition, if there exist partnered sessions of
the test sessions, they should be in the same status (accepted
but not used yet).

If either label.role ¼ responder (with label.authi ¼ unauth
or unilateral) or label.role ¼ initiator (with label.authi ¼
unauth), but there is no record label0 in ListS with label0:cid0i ¼
label.cidi, the flag lost is set to true. This means that a prereq-
uisite for testing a responder session (unauthenticated or
unilaterally authenticated) or for testing an initiator session
(unauthenticated) is that the responder/initiator session has
an honest contributive partner.

If label.testedi ¼ true, return label.Ki, which ensures the
consistency for repeated queries. Otherwise, set
label.testedi to true and return the session key label.Ki

(if btest ¼ 1) or label.Ki  D
$

from the session key distribu-

tion D (if btest ¼ 0). Moreover, if there is a record label0 in
ListS with label0:sid0i ¼ label.sidi and label’.stexec ¼
acceptedi, also set label0:K0i ¼ label.Ki and label0.tested0i ¼
true, which ensures the consistency for partnered sessions.

4.4 Security Definitions

The basic security of a handshake protocol is defined by
requiring that (i) the protocol be match secure, ensuring the
session identifiers sid effectively match the partnered ses-
sions, and (ii) the protocol provides key secrecy, ensuring
that the adversary cannot distinguish a fresh session key
from a random element in the same distribution. The
“advanced” security of a handshake protocol needs some
additional requirements: the multi-ciphersuite security, pro-
viding the basic security even in the case of key reuse across
different ciphersuites, and the backwards-compatibility secu-
rity, providing the basic security even in the case of key
reuse across multiple versions.

4.4.1 Match Security

The following conditions should be all satisfied:

1) Sessions with the same session identifier for some
stage agree on the same ciphersuite;

2) Sessions with the same session identifier for some
stage share the same session key at that stage;

3) Sessions with the same session identifier for some
stage agree on the authentication level at that stage;

4) Sessionswith the same session identifier for some stage
share the same contributive identifier at that stage;

5) Sessions are partnered with the intended (authenti-
cated) participants;

6) Session identifiers do not match across different
stages;

7) At most two sessions have the same session identi-
fier at any stage.

Definition 5 (Match Security). Let NPjj~SP be a multi-cipher-
suite handshake protocol, and A be a probabilistic polynomial-
time adversary interacting with NPjj~SP via the queries defined
in Section 4.3 in the following MCS game GMatch

MCS;A:

Setup. The key reuse variables dU;fc;dg and dU;fc;dg are set for
any U 2 U. Then the challenger generates a long-term private/

public key pair ( ~skU , ~pkU ) for each participant U according to
dU;fc;dg and dU;fc;dg.

Query. The adversary A receives the generated public keys
and interacts with the challenger through the queries
NewSession, Send, Reveal, and Corrupt.

Stop. At some point, the adversary stops with no output.
We say that A wins the MCS game, denoted by

GMatch
MCS;A ¼ 1, if at least one of the following conditions holds:

1) There exist distinct label and label0 such that label:sidi
¼ label0.sidi 6¼ ? for some stage i 2 f1; . . . ;Mg,
label:stexec 6¼ rejectedi and label0.stexec 6¼ rejectedi,
but label.c 6¼ label0.c. (The partnered sessions have dif-
ferent ciphersuite indexes in some stage.)

2) There exist distinct label and label0 such that label:sidi
¼ label0.sidi 6¼ ? for some stage i 2 f1; . . . ;Mg,
label:stexec 6¼ rejectedi and label0.stexec 6¼ rejectedi,
but label.Ki 6¼ label0.Ki. (The partnered sessions have
different session keys in some stage.)

3) There exist distinct label and label0 such that label:sidi
¼ label0.sidi 6¼ ? for some stage i 2 f1; . . . ;Mg, but
label.authi 6¼ label0.authi. (The partnered sessions
have different authentication types in some stage.)

4) There exist distinct label and label0 such that label:sidi
¼ label0.sidi 6¼ ? for some stage i 2 f1; . . . ;Mg, but
label.cidi 6¼ label0.cidi or label.cidi ¼ label0.cidi ¼ ?.
(The partnered sessions have different or unset contrib-
utive identifiers in some stage.)

5) There exist distinct label and label0 such that
label:sidi ¼ label0:sidi 6¼ ? for some stage i 2
f1; . . . ;Mg, label.authi ¼ label0.authi 2 funilateral;
mutualg, label.role ¼ initiator, and label0.role ¼
responder, but label.V 6¼ label0.U or label.U 6¼
label0.V (only when label.authi ¼ mutual). (The part-
nered sessions have different intended authenticated
partners.)

6) There exist (not necessarily distinct) label and label0

such that label:sidi ¼ label0:sidj 6¼ ? for distinct
i; j 2 f1; . . . ;Mg. (The same session identifier is shared
by different stages.)

7) There exist distinct label, label0, and label00 such that
label:sidi ¼ label0.sidi ¼ label00.sidi 6¼ ? for some
stage i 2 f1; . . . ;Mg. (The same session identifier is
shared by three or more sessions.)

We say a multi-ciphersuite handshake protocol is match
secure, if for all probabilistic polynomial-time adversaries A
the advantage Advmcs-match

NPjj~SP;A ¼ Pr [GMatch
MCS;A ¼ 1] is neglð�Þ.

4.4.2 Key Secrecy

Definition 6 (Key Secrecy). Let NPjj~SP be a multi-cipher-
suite handshake protocol with key distribution D and
authenticity properties AUTH, and A be a probabilistic
polynomial-time adversary interacting with NPjj~SP via the
queries defined in Section 4.3 in the following MCS game

GSecrecy;D
MCS;A :

Setup. The key reuse variables dU;fc;dg and dU;fc;dg are set for
any U 2 U. Then the challenger generates a long-term private/
public key pair ( ~skU , ~pkU ) for each participant U according to
dU;fc;dg and dU;fc;dg, chooses the test bit btest  $ f0; 1g, and sets
the flag lost ¼ false.
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Query. The adversary A receives the generated public keys
and interacts with the challenger through the queries
NewSession, Send, Reveal, Corrupt, and Test. Note that
such queries may set the flag lost to true.

Guess. At some point, A stops and outputs a guess b.
Finalize. The challenger sets the flag lost to true if there

exist (not necessarily distinct) label and label0 such that
label:sidi ¼ label0.sidi, label:stkey;i ¼ revealed, and
label0.testedi ¼ true for some stage i 2 f1; . . . ;Mg.

We say that A wins the MCS game, denoted by

GSecrecy;D
MCS;A ¼ 1, if b ¼ btest and lost ¼ false. A multi-cipher-

suite handshake protocol provides key secrecy, if for all prob-
abilistic polynomial-time adversaries A the advantage
Advmcs-secrecy;D

NPjj~SP;A ¼ jPr [GSecrecy;D
MCS;A ¼ 1] � 1

2j is neglð�Þ.

4.4.3 Multi-Ciphersuite and Backwards-Compatibility

Security

Definition 7 (Multi-Ciphersuite Security). We say a multi-
ciphersuite handshake protocol NPjj~SP is multi-ciphersuite
secure with concurrent authentication types AUTH if NPjj~SP
satisfies bothmatch security and key secrecy.

Definition 8 (Backwards-Compatibility Security). Let
NPjj~SP be a multi-ciphersuite handshake protocol, and the MCS
games GMatch

MCS;A and GSecrecy;D
MCS;A be respectively extended to the

BC games GMatch
BC;A and GSecrecy;D

BC;A by giving the adversary addi-

tional access to the query BCAux. For a fixed BCFunc triggered
by BCAux, we say NPjj~SP is backwards-compatibility secure
with concurrent authentication types AUTH if NPjj~SP still sat-
isfies bothmatch security and key secrecy.

Similarly, we define the advantages of A as Advbc-match
NPjj~SP;A ¼ Pr

[GMatch
BC;A ¼ 1] and Advbc-secrecy;D

NPjj~SP;A ¼ jPr [GSecrecy;D
BC;A ¼ 1] � 1

2 j.
Remark 1.When the model is limited to a single ciphersuite

(i.e., nSP ¼ 1), our security definition is equivalent to the
original Match Security and Key Secrecy by Dowling
et al. [35]. In this case we denote the MCS-1 games as

GMatch
MCS-1;A and GSecrecy;D

MCS-1;A , and the advantages of A as

Advmcs-1-match
NPjjSP;A and Advmcs-1-secrecy;D

NPjjSP;A , respectively.

5 MULTI-CIPHERSUITE SECURITY OF TLS 1.3
DRAFT-18

As described in the introduction, TLS 1.2 is not multi-
ciphersuite secure. The cross-protocol attack on TLS 1.2 pro-
posed by Mavrogiannopoulos et al. [4] can be captured in
the security model of Section 4. In particular, with probabil-
ity around 2�40, a ServerKeyExchange message from a
signed-ECDH ciphersuite can be utilized by an adversary to
impersonate the server using a finite field DH ciphersuite
and cause a client to accept, and thus the match security of
the protocol is broken. Fortunately, in TLS 1.3 drafts, all
handshake messages up to when the signature is calculated,
including the negotiated ciphersuite, are used for an honest
participant to generate the signature. Intuitively, by such
binding, only the negotiated ciphersuite can be accepted,
and thus the cross-protocol attack is avoided, which high-
lights the strict necessity of including more information

(i.e., the ciphersuite list provided by the client) in the proto-
col’s signature contents. In this section, we prove that TLS
1.3 draft-18 is secure even if the same signing key is used
across multiple ciphersuites.

First, we define the session identifiers and the contribu-
tive identifiers for the stages as specified in TLS 1.3 draft-18
to be the unencrypted messages sent and received exclud-
ing the Finishedmessages:

sid1 ¼ (ClientHello, client_key_shares, cipher_

suites, ServerHello, server_key_share, cipher_suite),

sid2 ¼ (sid1, EncryptedExtensions, CertificateRequest
�,

ServerCertificate�, ServerCertificateVerify�, Cli-
entCertificate�, ClientCertificateVerify�),

sid3 ¼ (sid2, NewSessionTicket‘+’“RMS”), and

sid4 ¼ (sid3, “EMS”).

The contributive identifiers are continuously appended
on sending (resp. receiving) the messages by the client and
the server. When the client sends the ClientHello, cli-
ent_key_shares, and cipher_suitesmessages, it sets

cid1 ¼ (ClientHello, client_key_shares, cipher_

suites),

and subsequently, on receiving the ServerHello, serv-
er_key_share, and cipher_suite messages, it extends
the contributive identifier to

cid1 ¼ (ClientHello, client_key_shares, cipher_

suites, ServerHello, server_key_share, cipher_suite).

The other contributive identifiers are set to cid2 ¼ sid2,
cid3 ¼ sid3, and cid4 ¼ sid4 by each party on sending its
respective Finishedmessage.

Theorem 1 (TLS 1.3 draft-18 is multi-ciphersuite secure).
Let TLS

��!
be the multi-ciphersuite TLS 1.3 protocol with each of

the nSP ciphersuites TLSc being a signed-Diffie-Hellman cipher-
suite as in Section 3. Then TLS

��!
is multi-ciphersuite secure in a

key-independent and stage-1-forward-secure manner with con-
current authentication properties AUTH ¼ fðunauth; unauth;
unauth; unauthÞ; ðunauth; unilateral; unilateral; unilateralÞ;
ðunauth;mutual;mutual;mutualÞg. Formally, for any efficient
adversary A, we have

Advmcs-match

TLS
�!

;A � nSP � n2
s �

1

q
� 2�l þ nu � AdvEUF-CMA

Sigc

� �

and

Advmcs-secrecy;D
TLS
�!

;A
� 4nSP � ns �

�
2AdvCOLL

Hashc
þ 2nu � AdvEUF-CMA

Sigc

þ ns �
�
AdvCOLL

Hashc
þAdvPRF-ODH

PRFc;Gc
þ 3AdvPRF-secPRFc

��
,

where ns is the maximum number of the sessions, nu is the
maximum number of the users, q is the group order, and l is
the bit length of the nonces.2

Proof. We sketch the proof in the following steps:
Step1: First, we prove the security of a single cipher-

suite TLSc with additional access to a function BCFuncð�Þ

2. Our theorem is in line with Theorem 5.2 in [35], with the only dif-
ference that following [37] (version 20170131) we switch to the PRF-
ODH assumption.
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representing specific signing algorithm, using which the
adversary can get signatures from another ciphersuite (as
long as queries to the function do not violate certain condi-
tions against trivial attacks). (Lemmas 5.1 and 5.2)

Step2:Next, we prove that any ciphersuite TLSd which
shares long-term keys with TLSc can be simulated using
BCFunccð�Þ. (Lemma 5.3)

Step3: Finally, we prove that the collection of the
ciphersuites is secure, even if the long-term keys are
reused across multiple ciphersuites. (Lemma 5.4)

Before introducing the lemma, we extend the MCS-1

games GMatch
MCS-1;A and GSecrecy;D

MCS-1;A to allow the adversary
access to a signature oracle. Let TLSc be a single cipher-

suite protocol. In particular, the adversary A is given

additional access to the query BCFunccðmÞ. If there exists
d satisfying dU;fc;dg ¼ 1, the query returns Sigc:Signðsk;
HcðmÞÞ. Note that in order to exclude trivial attacks, the

query is returned ? when the ciphersuite identifier con-

tained in the queried message m is equal to c (if the
ServerHello message is included in the queried mes-

sage m and can be parsed to get the ciphersuite identi-

fier). Similarly, we define the advantages of A as

Advmcs-1-match
TLSc;BCFuncc

ðAÞ and Advmcs-1-secrecy;D
TLSc;BCFuncc

ðAÞ. tu
Lemma 5.1. Let TLSc be a single ciphersuite TLS 1.3 handshake

protocol. Then TLSc is match secure: for any efficient adver-
sary A with additional access to a specific signing algorithm
BCFunccð�Þ, we have

Advmcs-1-match
TLSc;BCFuncc

ðAÞ � n2
s �

1

q
� 2�l þ nu �AdvEUF-CMA

Sigc
;

where ns is the maximum number of the sessions in ciphersuite
c, nu is the maximum number of the users, q is the group order,
and l is the bit length of the nonces.

Weneed to show the single ciphersuite TLS 1.3 handshake
protocol satisfies the seven properties of Match Security
defined in Section 4.4.1. As the proof of this lemma is similar
to that of Theorem 5.1 in [35], we omit it here.3

Lemma 5.2. Let TLSc be a single ciphersuite TLS 1.3 handshake
protocol. Then TLSc provides key secrecy in a key-independent
and stage-1-forward-secure manner with concurrent authentica-
tion properties AUTH ¼ fðunauth; unauth; unauth; unauthÞ;
ðunauth; unilateral; unilateral; unilateralÞ; ðunauth;mutual;
mutual;mutualÞg. Formally, for any efficient adversary A with
additional access to a specific signing algorithm BCFunccð�Þ, we
have

Advmcs-1-secrecy;D
TLSc;BCFuncc

ðAÞ � 4ns �
�
2AdvCOLL

Hashc
þ 2nu �AdvEUF-CMA

Sigc

þ ns �
�
AdvCOLL

Hashc
þ AdvPRF-ODH

PRFc;Gc
þ 3AdvPRF-secPRFc

��
,

where ns is the maximum number of the sessions in ciphersuite
c and nu is the maximum number of the users.

Proof. Following [35] we consider the case that the adver-
sary makes a single Test query only. Since there are ns

sessions and each session has four stages, an arbitrary
stage can be tested with a factor of 1

4ns
. From now on, we

consider the tested query on session label at stage i.

We consider the three (disjoint) cases separately in our
subsequent security analysis:

A. The tested query on a client session without an
honest contributive partner at the first stage;

B. The tested query on a server session without an
honest contributive partner at the first stage;

C. The tested query on a session with an honest con-
tributive partner at the first stage.

Case A. Test Client without Partner. The proof is similar
to that in [35]; due to space concerns we only sketch it in
Table 1 (Case A part) and give detailed description of the
difference brought in by the auxiliary signing algorithm
BCFunccð�Þ.

Game A.2. If the tested client session receives, within
the ServerCertificateVerify message, a valid sig-
nature under the public key pkU of some user U 2 U
such that the hash value has not been signed by any of
the honest sessions, the challenger aborts the game.
This means that either the adversary A has computed a
valid signature himself, or A has utilized the signing
algorithm BCFunccð�Þ to compute a signature on mes-
sages in this session. Just as our definition of BCFunccð�Þ

TABLE 1
Sequence of Games in the Proof of Case A/B/C

Cases Games Probability loss Description Justification

Game A.0 - initial game -

Case A

Game A.1 AdvCOLL
Hashc

no collision in hash

function Hashc

collision

resistance of

Hashc

Game A.2 nu�AdvEUF-CMA
Sigc

no signature

forgery of Sigc

EUF-CMA

security of Sigc

Game B.0 - initial game -

Case B

Game B.1 AdvCOLL
Hashc

no collision in

hash function Hashc

collision

resistance of

Hashc

Game B.2 nu�AdvEUF-CMA
Sigc

no signature

forgery of Sigc

EUF-CMA

security of Sigc

Game C.0 - initial game -

Game C.1 a factor of 1
4ns

guess the tested

session’s partner

-

Game C.2 AdvCOLL
Hashc

no collision in hash

function Hashc

collision

resistance of

Hashc

Case C

Game C.3 AdvPRF-ODH
PRFc ;Gc

replace HS with a

random string fHS

hardness of

PRF-ODH

assumption

Game C.4 AdvPRF-secPRFc
replace ctshs; stshs,

SFK, and CFK with

random strings gctshs ,gstshs, gSFK, and gCFK

security of

HKDF:Expand

Game C.5 AdvPRF-secPRFc
replace MS with a

random string gMS

security of

HKDF:Extract

Game C.6 AdvPRF-secPRFc
replace ctkapp, stkapp,

RMS, and EMS with

random strings gctkapp,gstkapp, gRMS, and gEMS

security of

HKDF:Expand

3. In [35], the authors proved that the draft-05 full handshake is
multi-stage-secure without BCFunccð�Þ, which implies the match secu-
rity according to the security definition. We can conclude this property
for the full handshake in draft-18 since they have similar structures,
with some minor changes (e.g., the key derivation function from PRF to

HKDF). In addition, AdvEUF-CMA
Sigc

is also considered in our lemma, since

a successful forgery of the signature can result in a session to accept
without having a partner with the same session identifier.
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demands, for all m queried to BCFunccð�Þ, it returns ?
when the ciphersuite identifier contained in the queried
message m is equal to c, and thus no query to the signa-
ture oracle helps A to get a valid signature in cipher-
suite TLSc.

We now construct an EUF-CMA signature forger, who
receives a public key pk as the challenge, guesses a user U
for signature verification (which is responsible for our
reduction loss of nu), replaces pk with pkU;c, generates
private/public key pair for any other user U 0 2 U n fUg
in ciphersuite c, and runs the game Game A.1 for A.

Since each honest session has a different session iden-
tifier, the transcript value expected by the tested client
session cannot be signed by any honest party. Besides,
by the modification in Game A.1, there is no collision
between any two honest computations of the hash func-
tion, implying that the hash value in question has not
been signed by an honest party before.

Finally, if Game A.2 does not abort, it is assured that
an honest session outputs the signature obtained by the
tested client within the ServerCertificateVerify

message. Particularly, HðCHjj . . . jjSCVÞ, containing all
messages in sid1, is used for the honest party to compute
the signature. As a consequence, the tested client and the
(distinct) honest session outputting the signature agree
on sid1and then cid1, and thus are partnered at the first
stage. The adversary A cannot test a client session with-
out an honest first-stage partner in Game A.2, resulting
in the test bit btest being unknown toA and the advantage
of A in Game A.2 being neglð�Þ.

Case B. Tests Server without Partner. The proof is similar
to that in [35], and here we only sketch it in Table 1 (Case
B part) and describe the difference brought in by the aux-
iliary signing algorithm BCFunccð�Þ.

Game B.2. In this game, if the tested server session
receives, within the ClientCertificateVerify mes-
sage, a valid signature under the public key pkU of some
user U 2 U such that the hash value has not been signed
by any of the honest sessions, the challenger aborts the
game. The simulation of the signature forger is the same
as that in Game A.2.

Case C. Tests with Partner. The proof is similar to that in
[35], with minor changes such as the new key calculation
schedule shown in [15] (on pages 76-79). We only pro-
vide a proof sketch in Table 1 (Case C part). tu

Lemma 5.3. Let TLSd be a single ciphersuite in the TLS 1.3
handshake protocol. Then TLSd can be simulated using the aux-
iliary signing algorithm BCFunccð�Þ if dU;fc;dg ¼ 1.

Proof. The only secret information of TLSd is the shared
long-term keys with TLSc. What the simulation algorithm
does is the same as what TLSd does except that the signa-
ture operation is replaced by BCFunccð�Þ. According to
the constraint of BCFunccð�Þ, the correct signature query
in TLSd should be allowed. Thus, TLSd can be simulated
correctly. tu

Lemma 5.4. Let TLS
��!

be the multi-ciphersuite TLS 1.3 handshake
protocol with each of the nSP ciphersuites TLSc being a signed-
Diffie-Hellman ciphersuite as in Section 3. Then for any effi-
cient adversary A, we can construct an algorithm B such that

Advmcs-match

TLS
�!

;A � nSP � Advmcs-1-match
TLSc;BCFuncc

ðBAÞ
and

Advmcs-secrecy;D
TLS
�!

;A
� nSP �Advmcs-1-secrecy;D

TLSc;BCFuncc
ðBAÞ:

Proof. Our main idea is to construct a simulator B for TLS
��!

such that whenever A breaks the match security or the
key secrecy of ciphersuite TLSc� in the MCS game for
multi-ciphersuite secure protocol TLS

��!
, the algorithm B

will, with probability 1
nSP

, break the match security or the
key secrecy of a single ciphersuite TLSc with additional
access to a signing algorithm BCFunccð�Þ, respectively.

Let A be an adversary in the MCS game. Recall that
at the beginning of the game, A sets the key reuse vari-
able dU;fc;dg indicating whether the party U reuses the
long-term keys between TLSc and TLSd. In particular, if
dU;fc;dg ¼ 1, U will set skU;c ¼ skU;d.

The simulation of B is as follows. First, B chooses
ĉ 2 f1; . . . ; nSPg and interacts with a challenger in the
MCS-1 game for TLSĉ with BCFunccð�Þ. B obtains the
parties’ public keys for TLSc from the MCS-1 game. For
each party U and each TLSd, if dU;fc;dg ¼ 1 then B sets the
public key of U in TLSd to its public key in TLSc; other-
wise, it generates a fresh key pair for TLSd. B gives all of
these public keys to A.

Next, B proceeds as the challenger of the MCS game
for A. Any queries including NewSession, Send, Reveal,
Corrupt, and Test specified in the MCS game can be
made by A. B needs to answer all of them. B will start off
every session by relaying it to the challenger of the MCS-
1 security game for TLSĉ with the auxiliary signing algo-
rithm BCFunccð�Þ. If a session ends up negotiating TLSĉ,
then B continues relaying all queries for that session to
the TLSĉ challenger. If a session ends up negotiating
TLSd other than TLSĉ, B needs to simulate it. If dU;fĉ;dg ¼ 0,
the simulation of TLSd is trivial since B generates U’s pri-
vate key for it; otherwise if dU;fĉ;dg=1, according to
Lemma 3, the TLSd can be simulated by the signing algo-
rithm BCFuncĉð�Þ. Besides, the output of the simulation
is precisely a valid message for TLSd, and thus the simu-
lation is perfect.

SupposeA breaks thematch security (or key secrecy) in
TLS
��!

. Then, there exist a c� 2 f1; . . . ; nSPg and a sessionwith
label breaking thematch security (or key secrecy) in TLSc� .
With probability 1

nSP
, ĉ ¼ c�. Thus B breaks the

match security (or key secrecy) of a single ciphersuite TLSĉ
with additional access to a signing algorithm BCFuncĉð�Þ.
Finally, we have Advmcs-match

TLS
�!

;A � nSP� Advmcs-1-match
TLSc;BCFuncc

ðBAÞ
andAdvmcs-secrecy;D

TLS
�!

;A
� nSP � Advmcs-1-secrecy;D

TLSc;BCFuncc
ðBAÞ. tu

Theorem 1 now follows immediately from Lemmas 5.1,
5.2, 5.3, and 5.4.

Remark 2. Just like specified in TLS 1.3 draft-18, the pre-
shared key (PSK) ciphersuite does not contain any public
key scheme, and the only relationship with other signa-
ture-based ciphersuites comes from the derivation of the
pre-shared master secret. Thus, the PSK ciphersuite is
independent of other ciphersuites, and our model and
proof provide the security guarantee for PSK.

282 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 16, NO. 2, MARCH/APRIL 2019



6 ON THE BACKWARDS-COMPATIBILITY SECURITY

OF THE TLS 1.3 HANDSHAKE PROTOCOL

In this section, we analyze the backwards-compatibility
security of TLS 1.3. By recalling the cross-version attack of
Jager et al. [19], we show why TLS 1.3 is not secure in our
security model. Furthermore, we prove that the TLS 1.3
draft-18 multi-ciphersuite handshake protocol meets our
strong notion of backwards-compatibility security if an
older version (such as TLS 1.2) has been upgraded with the
countermeasures recommended in the standard [1].

6.1 Capturing Jager et al.’s Attack in Our Model

We recall the backwards compatibility attack on TLS 1.3
draft-07 proposed by Jager et al. in 2015 [19]. Specifically,
we consider a setting where there is a TLS client C that sup-
ports only TLS 1.3, and thus may expect that it is immune to
the weakness in older versions (e.g., the Bleichenbacher
RSA padding oracle attack [20] on TLS 1.2). However, in
order to maximize compatibility with different TLS clients,
a server S supports TLS 1.3 and TLS 1.2 simultaneously,
and thus the server may use the same RSA certificate for
both versions. Note that PKCS #1 v1.5 encryption is sup-
ported in TLS 1.2, and then we show that the vulnerability
of TLS 1.2 against Bleichenbacher’s attack allows an adver-
sary to impersonate S towards C. In particular,
Bleichenbacher’s attack enables the adversary to decrypt
PKCS #1 v1.5 ciphertexts without knowing the private key
of RSA, as long as there exists an “oracle” that allows the
adversary to distinguish “valid” from “invalid” PKCS #1
v1.5 padded ciphertext. Such an oracle may in practice be
given by a TLS 1.2 server’s response. It is sufficient for the
adversary to compute a “forged” RSA signature using the
decrypted plaintext message, which in turn is sufficient for
the adversary to impersonate S towards C in TLS 1.3.

Formally, this attack is captured by our security model in
Section 4 as follows. The adversaryA can query an auxiliary
oracle BCAux(S, c, m), where dS;fc;dg=1, TLSc denotes a
ciphersuite in TLS 1.3 containing RSA signature, TLSd
denotes a ciphersuite in TLS 1.2 containing PKCS #1 v1.5
encryption, and the same RSA certificate of S is shared
between TLSc and TLSd. In this case, the BCFunc is the serv-
er’s response for queried PKCS #1 v1.5 ciphertext, which
returns the decryption result on message m (“valid” or
“invalid”). This is sufficient for the adversary to compute a
forged signature on m. This means sessions are not part-
nered with intended (authenticated) participants, and thus
the match security of the protocol is broken. Furthermore, if
the queried message is chosen by the adversary, the key
secrecy of the protocol is also broken. Therefore, TLS 1.3
cannot provide backwards-compatibility security if an older
version is not upgraded with the countermeasures recom-
mended in the standard.

6.2 Lessons from Jager et al.’s Attack

The backwards compatibility attack on TLS 1.3 is mainly
due to the fact that the server uses the same RSA certificate
in TLS 1.3 and older versions. In order to prevent this attack,
a first obvious approach is therefore to enforce key separa-
tion, that is, to use different keys for different protocol ver-
sions. However, in practice there is no effective way to

configure the popular TLS server implementation OpenSSL
such that different RSA certificates are used for different
TLS versions or different ciphersuite families. Another obvi-
ous solution is to invalidate vulnerable ciphersuites in these
versions, however, which breaks standard-conformance,
since PKCS #1 v1.5 encryption based key transport is the
only mandatory-to-implement ciphersuite in TLS 1.1 and
1.2. Thus, the need for backwards compatibility and inter-
operability in practice makes it impossible to employ these
countermeasures.

Even though PKCS #1 v1.5 is abolished in TLS 1.3, the
coexistence with older TLS versions is still a large barrier to
achieve the backwards security of TLS 1.3. It is worth men-
tioning that the TLS standards [1], [42], [43] have added a
note to describe countermeasures to avoid Bleichenbacher’s
padding oracle attack: “In any case, a TLS server MUST NOT
generate an alert if processing an RSA-encrypted premaster secret
message fails, or the version number is not as expected. Instead, it
MUST continue the handshake with a randomly generated premas-
ter secret.” Intuitively, this method hides the decryption fail-
ure from the adversary, makes the adversary unable to
distinguish incorrectly formatted message blocks and/or
mismatched version numbers from correctly formatted RSA
blocks, and finally invalidates the ciphertext checking oracle.

6.3 Backwards-Compatibility Security of TLS 1.3
with Countermeasures

In this section, we prove that the proposed countermeasures
on TLS 1.2 (as mentioned in Section 6.2) provide good pro-
tection for TLS 1.3 against backwards compatibility attacks.

Definition 9 (EUF-CMA security in the presence of an
auxiliary oracle). Let Sig ¼ (Sig:Gen, Sig:Sign, Sig:Verify)
be a signature scheme, BCFunc be an algorithm sharing keys with
Sig. The existential unforgeability of the signature scheme under
an adaptive chosenmessage attack (EUF-CMA) in the presence of
an auxiliary oracle is defined through the following game:

1) The adversary A receives the public key pk with
ðpk; skÞ  Sig:Genð1kÞ.

2) A makes signature queries for messages m of his
choice, and the challenger responds to each signature
query with a signature s ¼ Sig:Sign(sk;m). Addi-
tionally, A makes an auxiliary oracle queries for mes-
sages c of his choice, and the challenger responds with
BCFunc(sk, c) or a failure symbol ?.

3) A outputs the signature of a messagem0 which was not
queried for signature before.

The advantage AdvEUF-CMA
Sig;BCFunc of an adversaryA is the probabil-

ity he wins the above game. A signature scheme is existentially
unforgeable under an adaptive chosen message attack in the
presence of an auxiliary oracle if for any polynomial-time

bounded adversary, AdvEUF-CMA
Sig;BCFunc is neglð�Þ.

To prove the backwards-compatibility security of TLS 1.3
with countermeasures, we introduce two lemmas first.

Lemma 6.1. Let TLS
��!

be the multi-ciphersuite TLS 1.3 handshake
protocol with each of the nSP ciphersuites TLSc being a signed-
Diffie-Hellman ciphersuite as in Section 3, and BCFunccð�Þ be
an algorithm instantiated by server’s response in TLS 1.2. Then
for any efficient adversaryA, for all ciphersuites c, we have
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Advbc-match

TLS
�!

;A � nSP � n2
s �

1

q
� 2�l þ nu �AdvEUF-CMA

Sigc;BCFuncc

� �
and

Advbc-secrecy;D
TLS
�!

;A
� 4nSP � ns �

�
2AdvCOLL

Hashc
þ 2nu �AdvEUF-CMA

Sigc;BCFuncc

þns �
�
AdvCOLL

Hashc
þAdvPRF-ODH

PRFc;Gc
þ 3AdvPRF-secPRFc

	�
,

where ns is the maximum number of the sessions, nu is the
maximum number of the users, q is the group order, and l is
the bit length of the nonces.

Proof. In TLS 1.3, all the supported public key schemes are
signature algorithms including RSASSA-PSS, ECDSA,
and EdDSA. Correspondingly, in TLS 1.2, the supported
public key schemes include RSAES-PKCS1-v1_5,
RSASSA-PKCS1-v1_5, DSA, and ECDSA. Therefore, the
key reuse cases across versions may be RSASSA-PSS &
RSAES-PKCS1-v1_5, RSASSA-PSS & RSASSA-PKCS1-
v1_5, or ECDSA & ECDSA. We have captured all of them
through the backwards compatibility oracle BCAux
(instantiated as different BCFuncs) in our model. More
specifically, if SPd contains an encryption scheme such as
RSA PKCS #1 v1.5 used in the TLS-RSA public key
encryption mode, then the BCFunccðmÞ represents a
decryption oracle on arbitrary message m; if SPd contains
a signature scheme, then the BCFunccðmÞ represents a
signature oracle on arbitrary message m, except that the
ciphersuite identifier contained in the queried message m
is equal to c (in order to exclude trivial attacks).

Thus the proof is similar to that of Theorem 1, and
the difference is caused by the auxiliary oracle. In

particular, AdvEUF-CMA
Sigc

in Theorem 1 is replaced with

AdvEUF-CMA
Sigc;BCFuncc

.

In addition, we show that any key reused ciphersuite
in TLS 1.2 can be simulated using specific BCFunc. As
we have elaborated above, BCFuncð�Þ provides a private
key operation result on its queried message, and the limi-
tation of the input for BCFuncð�Þ is only reflected on the
current version (i.e., TLS 1.3) when the BCFuncð�Þ repre-
sents a signing algorithm. Thus, the simulation of
BCFuncð�Þ for any key reused ciphersuite in TLS 1.2 is
perfect. tu
Since RSA is the only algorithm which is used both in the

encryption (PKCS #1 v1.5) and in the signature (RSASSA-
PSS), in Lemma 6.2 we will prove the EUF-CMA security of
the RSASSA-PSS in the presence of an auxiliary oracle as
given in Definition 9, where BCFuncð�Þ is a constrained
decryption oracle.

Lemma 6.2. The RSASSA-PSS used in TLS 1.3 is EUF-CMA
secure in the presence of an auxiliary oracle, if the
BCFuncð�Þ is a constrained decryption oracle in the IND-
CCCA secure KEM instantiated by TLS-RSA in 1.2 with rec-
ommended countermeasures.

Proof. First, according to [47], EUF-CMA security of the
RSASSA-PSS scheme is reduced to the RSA problem by
embedding the challenge in the inverse of RSA problem
into the simulation of a particular random oracle. Specifi-
cally, a successful signature forgery on the message

queried to this particular random oracle can be used to
solve the RSA problem.

Second, in order to resist Bleichenbacher’s attack, the
TLS standard has adopted the countermeasures [1] that
require the server to continue the handshake with a ran-
domly generated premaster secret (pms) if the decryption
of an RSA-encrypted premaster secret message fails. As
described in [30], the KEM underlying the TLS-RSA
(PKCS #1 v1.5 with these countermeasures) satisfies the
IND-CCCA (indistinguishability against constrained
chosen-ciphertext attack) security based on the known
result that PKCS #1 v1.5 is OW-PCA (one-way against
plaintext checking attacks) secure [48]. In the security
game, the adversary is provided with a constrained
decryption oracle CDec that returns the correct session
key and the unencrypted Finished message only when
the PKCS #1 v1.5 ciphertext is valid.

In our proof, we want to prove that the RSASSA-PSS is
EUF-CMA secure even if the long-term keys are shared
with the PKCS #1 v1.5 encryption in TLS 1.2. Since we
consider the case of TLS 1.2 with proposed countermeas-
ures, according to the result of [30], the adversary of
RSASSA-PSS has extra access to CDec in [30], which is
the BCFuncð�Þ in our lemma.

Now the challenge of the proof is to simulate the CDec
oracle without knowing the secret key for signing. Just as
we havementioned, the TLS-RSA (PKCS #1 v1.5with these
countermeasures) can be extracted as a KEM, which is
IND-CCCA secure based on the OW-PCA security of
PKCS #1 v1.5 (with a plaintext checking oracle PCAð�Þ).
Note that in our proof,wemodel KDF(�) as a randomoracle
and there exists a KDF-query list. If an adversary queries
the CDec oracle with the message m for decryption, the
simulator will parse m to get a ciphertext c for unknown
pms. Then for each KDF-query in the form (pms, �) ever
issued by the adversary, the simulator uses its PCAð�Þ ora-
cle to check whether the pair ðpms; cÞ is a valid plaintext-
ciphertext pair and if so it answers that querywith pms.

Thus, the adversary cannot get any decryption infor-
mation on a manipulated ciphertext, and cannot use this
decryption oracle to forge valid signatures on any freely
chosen messages. In brief, even for the share of long-term
keys, the PKCS #1 v1.5 in TLS with the proposed fixes
cannot help the PSS scheme’s forger to forge a valid sig-
nature on the arbitrary message he chooses. The remain-
ing proof is the same as that in [47], we omit it here. tu

Theorem 2. If the recommended countermeasures are adopted in
TLS 1.2, then TLS 1.3 draft-18 multi-ciphersuite handshake
protocol is backwards-compatibility secure w.r.t. TLS 1.2.

Proof. According to Lemma 6.1, to complete the proof of

this theorem, we only need to prove AdvEUF-CMA
Sigc;BCFuncc

is

negligible. In our setting, there are only three kinds of key

reuse scenarios: (1) key reuse between two ciphersuites in

TLS 1.3, which has been proved in Section 5; (2) key reuse
between a signature scheme in TLS 1.3 and a signature

scheme in TLS 1.2, which can be proved in the same way

as in (1) with BCFuncð�Þ as the auxiliary signing algo-

rithm; (3) key reuse between a signature scheme in TLS

1.3 and a public encryption scheme in TLS 1.2 (RSASSA-
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PSS and RSAES-PKCS1-v1_5, respectively), which has
been proved in Lemma 6.2. tu

Remark 3. The backwards-compatibility security of TLS 1.3
with other older versions such as TLS 1.1 or TLS 1.0 can
be achieved in the same way if they have been upgraded
with the countermeasures recommended in the standards
[42], [43].

7 CONCLUSIONS

The IETF is currently developing the next-generation TLS,
version 1.3. The transparency of the standardization process
allows for comprehensive investigation of the protocol prior
to adoption, and we are motivated to take this opportunity
to look into the vexing and recurring problem of key reuse
in such a critical Internet standard.

We have developed a formal security model for multi-
ciphersuite key exchange protocols, covering all known
kinds of compositional interactions of different ciphersuites
and protocol versions, and providing reasonably strong
security guarantees. We have proved the multi-ciphersuite
security of the TLS 1.3 candidate draft-18, and further vali-
dated the design of the TLS 1.3 handshake protocol. In addi-
tion, we have identified the backwards compatibility attack
on TLS 1.3 draft-07 [19] in our model. We have also shown
that TLS 1.3 draft-18 is backwards-compatibility secure
with the countermeasures recommended in the TLS 1.2
standard [1], which can be summarized as follows: to
prevent a malicious client from misusing the server as
a decryption oracle, the server should continue the hand-
shake (without triggering an alert) with a randomly gener-
ated premaster secret even if it fails to process the
premaster secret encrypted with RSA by the client.

Concerning the key reuse problem, our model-based
treatment is also applicable to the analysis of other protocols
such as QUIC. Future work includes proposing a generic
analysis framework of multi-ciphersuite and backwards-
compatibility security in a modular fashion. We also hope
our research effort can shed light on practical issues in and
facilitate the design of relatively complex security protocols.
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