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Review of Probability Theory

DEF: We de�ne  as a vector (concatenat ion) of elements in set  , for example:

 is an element in 

So there are  elements in , where  ( ) repesents the number of elements in set   (cardinality).

DEF: Probability distribution  over universe  (�nite) is a funct ion , which sat is�es:

for example:

1. uniform distribut ion: 

2. point  distribut ion at  : 

QUESTION: please describe the probability distribut ion when you roll up a dice.

Sn S

(010) {0, 1}3

∣S∣n Sn ∣A∣ #A A

P U P

∀x ∈ U,P (x) ≥ 0

 P (x) =∑x∈U 1

∀x ∈ U,P (x) =  ∣U ∣
1

x  0 P (x  ) =0 1, ∀x = x  ,P (x) =0 0



DEF: For a set  , , the set   is called an event :

for example:

1. 

2. If  and , 

3. For events  and , 

DEF: A ramdom varible  is a funct ion : , for example:

, , we have:

DEF: Speci�cally, a uniform ramdom varible is a ramdom varible which sat is�es:

QUESTION: please write two uniform ramdom varibles where 

A ⊆ U Pr[A] =  P (x) ∈∑x∈A [0, 1] A

Pr[U] = 1
U = {0, 1}3 x ∈ U Pr[lsb  (x) =2 11] =  4

1

A  1 A2 Pr[A  ∪1 A  ] ≤2 Pr[A  ] +1 Pr[A  ]2

X X U → V

X : {0, 1} →n {0, 1} X(y) = lsb(y)

Pr[X = 0] = Pr[X = 1] =  2
1

r ←R U,Pr[r = a] =  ∣U ∣
1

U = {1, 2, 3, 4, 5}



Perfect Secrecy

DEF: A cipher  over  has perfect secrecy if:

where  is uniform in , i.e. ( )

The bad news is to sat isfy this condit ion, we must have , which makes it  hard to use in pract ice.

As we have learned eariler, OTP (One-Time-Pad) is an example of cipher scheme which sat is�es perfect

secrecy.

QUESTION: Let   and consider the following cipher de�ned over

Does this cipher have perfect  secrecy?

(E,D) (K, M, C)

∀m  ,m  ∈0 1 M, len(m  ) =0 len(m  ) ∧1 ∀c ∈ C

Pr[E(k,m  ) =0 c] = Pr[E(k,m  ) =1 c]

k K k ←R K

∣K∣ ≥ ∣M∣

M = C = K = {0, 1, 2, ⋯ , 255}
(K, M, C)

E(k,m) = m + k (mod 256);D(k, c) = c − k (mod 256)



Pseudo Random Generator (PRG)

So what will happen if we expand the ciphertext  from OTP? Then it  comes to the PRG:

DEF: In Foundations of Cryptography: Basic Tools, page 113, we de�ne pseudo random generator  as this:

A pseudorandom generator is a deterministic polynomial-time algorithm  satisfying the following 2 conditions:

1. There exists a function 

2. Pseudorandomness: The ensemble  is pseudorandom (unpreditable).

The function  is called the expansion factor of , and the input  to the generator is called its seed.

(Mention that  means the length for , not the cardinality.)

One pract ical example of PRG is stream cipher, like RC4 and Salsa20, while the former one is found to have

bias in init ial output .

Anyone intrested in this, please see details in paper Statistical Analysis of the Alleged RC4 Keystream

Generator, FSE 2001.

G

G

l : N → N s.t. ∀n ∈ N, l(n) > n and ∀s ∈ {0, 1} , ∣G(s)∣ =∗ l(∣s∣)

{G(U  )}  n n∈N

l G s

∣x∣ x



Predictability (Pseudorandomness)

As I said eariler, it  is not  pract ical to construct  an encrypt ion scheme which sat is�es perfect  secrecy.

However, that  doesn’t  mean an encrypt ion scheme which doesn’t  have perfect  secrecy is not  secure, due to

the limited power of adversary in pract ice.

To address security in cryptography, we need to clarify a set  of security defnit ions such as predictability and

dist inguishability (in the next  slide):

DEF: We say that   is predictable if:

for non-negligible  (e.g. )

DEF: PRG is unpreditable if it  is not  predictable.

G : K → {0, 1}n

∃eff alg. A and ∃   s.t.0≤i≤n−1

Pr  [A(G(k))∣  =
k K←
R 1,⋯ ,i G(k)∣  ] >i+1  +

2
1

ε

ε ε =  230
1



Semantic Security (Indistinguishability)

DEF:  is semantically secure if for all ef�cient  adversary ,  is negligible.E A Adv  [A,E]ss









PRF and PRP

In previous slides we discussed about PRG, which is widely used in stream ciphers. Next  we’ll introduce PRF

(pseudo random funct ion) and PRP (pseudo random permutat ion).

PRF is de�ned over :

such that  exists "eff" algorithm to evalutate .

PRP is de�ned over :

such that :

1. exists "eff" deterministic algorithm to evalutate .

2.  is one-to-one, and exists "eff" inversion algorithm .

QUESTION: PRF can construct  PRG easily, please provide an example.

(K,X ,Y )

F : K × X → Y

F(k,x)

(K,X)

E : K × X → X

E(k,x)

E(k, ⋅) D(k, y)



Security requirements of PRF (Introduction to Modern Cryptography, page 79):

To be short , you can interpret   as binary classi�cat ion funct ion used in machine learning (only outputs

0 or 1), and  is a truly random funct ion (TRF) chosen uniformly.

This equat ion means you can’t  use any method to tell which is which (PRF and TRF), so the  can be any n-

bit  string, and the right-hand side can be 0 or 1, as long as they are the same.

D(x)
f  (x)n

1n



Security requirements of PRP (Introduction to Modern Cryptography, page 80):

Just  nearly the same as the PRF slide, since PRP is invert ible, so we can add more constriants, like we may

require the inverse funct ion has the same property as the PRP.

Therefore, making the whole encrypt-decrypt  procedure indist inguishable from the TRP is necessary.

Someone may say this is boring, but  that ’s what formality does.

QUESTION: Please write 2 real-world examples of secure PRP.





CPA Security

As you can see, CPA security is semantic security for many-t ime key senario.



QUESTION: Does OTP sat is�y CPA security?

The answer is: NO!

In fact , all determinist ic encrypt ion algorithm don’t  have CPA security. The proof is as follows:

So how to solve this?

1. Randomized encrypt ion: encrypt  the plaintext  at  random t imes, and decrypt  according to entropy.

2. Nonce-based encrypt ion: CBC, CFB, CTR mode.



Message Authentication Code (MAC)

DEF: Message authent icat ion code  de�ned over  is a pair of algs:

 outputs  in 

 outputs "yes" or "no".

QUESTION: Can MAC be constructed by PRF?

I = (S,V ) (K, M, T )

S(k,m) t T

V (k,m, t)



And it  comes to the security de�nit ion:



Hash Function

DEF: Let   be a hash funct ion. ( )

A collsion for  is a pair 

A funct ion  is collsion resistant  if for all "eff" algs. :

Hash funct ion only provide collsion resistance, not  existent ial forgery. However we can use hash funct ions to

build secure MACs (HMAC).

QUESTION: Is hash funct ion a PRF?

H : M → T ∣M ∣ ≫ ∣T ∣

H m  ,m  ∈0 1 M  s.t: 

H(m  ) =0 H(m ) ∧1 m  =0  m  1

H A

Adv  [A,H] =CR Pr[A outputs collsion for H] ≤ negl(∣M ∣)



Generic Birthday Attack

First  let  me introduce the birthday paradox:

DEF (birthday paradox): Let   be independent ident ically distributed integers. 

 when .

Proof: (for uniform indep. )

Because , .

Q.E.D.

The reason why it  is called a "paradox" is the number of people are much smaller than our expectat ion to

achieve this probability. However, we can understand this by intuit ion:

 numbers have roughly  pairs, so if , a collsion may appear.

r  ∈i {1, ⋯ ,B} Pr[∃i = j :
r  =i r  ] ≥j  2

1 n = 1.2 ×  B

r  i

Pr[∃i = j : r  =i r  ] =j 1 − Pr[∀i = j : r  =i  r  ] =j 1 − (  )(  ) ⋯ (  )
B

B−1
B

B−2
B

B−n+1

= 1 −  (1 −∏i=1
n−1

 ) ≥
B
i 1 −  (e ) =∏i=1

n−1 −i/B 1 − e ≥−   i
B
1 ∑

i=1
n−1

1 − e  2B
n2

n = 1.2 ×  B 1 − e = 2B
n2

1 − e =0.72 0.53 >  2
1

N N2 N >2 B



Now we can introduce generic birthday attack from this paradox:

Generic alg. to �nd a collision in t ime  hashes:

1. Choose  random messages in : .

2. Compute  for .

3. Look for a collision . If not  found, go back to step 1.

QUESTION: What is the expected number of �nding a collision using this algorithm?

HARDER QUESTION: How many integers (chosen from ) do you expect  to choose so that  the

probability of �nding a triple collision (having three same numbers) is higher than 50%?

TIME FOR A BREAK

O(  )T

 T M {m}  1,2,⋯ ,  T

t  =i H(m  )i i = 1, 2, ⋯ ,  T

(t  =i t  )j

[1,B ]



CCA Security



 is CCA secure if for all "eff" A:

And we have a concrete example: CBC with rand. IV is not  CCA-secure (insecure under act ive attacks).

Suppose Alice wants to send Bob Borrow me $10000  (16 bytes), Eve wants to modify the 12th bit  from

0�31  to 0�32 .

To do this, Eve can intercept encrypt ion message and let  IV[11] = IV[11] ^ 0�31 ^ 0�32 , then Bob

will get  Borrow me $20000  after decrypt ion using the modi�ed IV.

E

Adv  [A,E] =CCA ∣Pr[EXP (0) = 1] − Pr[EXP (1) = 1]∣ ≤ negl



Authenticated Encryption (AE)

To solve this problem, authent icated encrypt ion was invented to provide con�dent iality against  act ive

attacks (i.e. provide CCA security).

An authent icated encrypt ion (AE) system is a cipher where:

DEF: cipher  provides AE if it  is:

sem. security under a CPA attack.

ciphertext  integrity: attack cannot create new ciphertexts that  decrypt  properly.

E : K × M × N → C

D : K × C × N → M ∪ {⊥}

(E,D)





Construction of AE

Since we didn’t  learn AE, the implementat ion is a lit t le tricky for newcomers. Here is a quest ion for you:

QUESTION: We often combine MAC and ENC together to achieve AE, so which of the implementat ions

provide AE? Suppose encrypt ion key is  and MAC key is .

1. (SSL): let  , .

2. (IPSec): let  , , .

3. (SSH): let  , , .

The SSH way is obviously wrong, because let   already exposes some information about .

The SSL way is sometimes correct  if  provides randomized encrypt ion like rand-CTR or rand-CBC.

Otherwise it  may be insecure (imagine  using OTP).

Therefore, the answer is IPSec (encrypt  then MAC), it  is always correct .

k  E k  I

tag = S(k  ,m)I res = E(k  ,m∣∣tag)E

c = E(k  ,m)E tag = S(k  , c)I res = c∣∣tag

c = E(k  ,m)E tag = S(k  ,m)I res = c∣∣tag

tag = S(k ,m)I m

(E,D)
(E,D)



QUESTION: Let   be an encrypt ion system with key space , message space  and ciphertext

space . Suppose  provides authent icated encrypt ion. Which of the following systems provide

authent icated encrypt ion: (as usual, we use  to denote string concatenat ion)

1. 

2. 

3. 

4. 

(E,D) K {0, 1}n

{0, 1}s (E,D)
∥

E (k,m) =′ E(k,m),H(m)  and D (k, (c,h)) =( ) ′
  {

D(k, c)
⊥

if H(D(k, c)) = h

otherwise

E (k,m) =′ c ← E(k,m), output (c, c)  and D (k, (c  , c  )) =[ ] ′
1 2   {

D(k, c  )1

⊥
if c  = c  1 2

otherwise

E (k,m) =′ E(k,m),E(k,m)  and D (k, (c  , c  )) =( ) ′
1 2 D(k, c  )1

E ((k  , k  ),m) =′
1 2 E(k  ,E(k  ,m)) and D ((k  , k  ), c) =2 1

′
1 2   {

D(k  ,D(k  , c))1 2

⊥
if D(k  , c) =⊥2 
otherwise



Deterministic Encryption (DE)

Suppose we have a database containing sensit ive user information, such as government ID. We want to

encrypt  the IDs to protect  user privacy, but  we st ill need to be able to ef�ciently search for speci�c IDs in

the database. That ’s when determinist ic encrypt ion takes place.

Of course, determinist ic encrypt ion cannot be CPA secure, the adversary can perform this attack:

Attacker can �rst  choose  and the server returns .

After that , attacker choose  and server will return  or . Since attacker knows the content  of ,

it  can win CPA game.

The solut ion to this problem is never encrypts same message twice. This happens when encryptor:

Chooses messages at  random from a large message space .

Message structure ensures uniqueness.

m  ,m  0 0 c  0

m  ,m  0 1 c  0 c  1 c  0

M



QUESTION: Is CBC or CTR mode with �xed IV det . CPA secure?

QUESTION: Is PRP det . CPA secure?



Synthetic IV (SIV)

Although PRP is capable of building a det . encrypt ion, PRP is not  �exible because you need to build an n-

bit  PRP for n-bit  messages. This is not  convenient  if you have a message with legnth  bits.

Synthet ic IV (SIV) can solve this problem, to be speci�c:

Let   be a CPA secure encrypt ion: 

Let   be a secure PRF.

DEF:

Then  is sem. sec. under det . CPA.

220

(E,D) E(k,m; r) → c

F : K × M → R

E  ((k  , k  ),m) =det 1 2   

⎩
⎨

⎧r ← F(k  ,m)1

c ← E(k  ,m; r)2

output r

E  det



Deterministic Authenticated Encryption (DAE)

To modify SIV a lit t le bit , we can get  determinist ic authent icated encrypt ion (DAE) using CTR mode.

How about using PRP to do DAE? The easiet  method is to append  bits of zeros, and check if the

decrypt ion has  bits of zeros at  the end. Since PRP is pseudorandom, the probability of faking an

encrypt ion is , which is negligible.

There are also ways to expand PRP from  to  where  like EME. However it  is 2x

slower than SIV so I’m not  going to talk about it  in this lecture.

λ

λ

 2λ
1

{0, 1}n {0, 1}N N ≫ n





Symmetric Encryption Summary



Public Key Encryption Intro

Suppose  people wants to share information with each other without eavesdropping.

The basic solut ion is to use a separate symmetric key for each pair,  keys in total.

However this is of course inef�cient .

A better solut ion is to use a trusted third party (TTP), if Alice and Bob wants to communicate with each

other. They �rst  store their symmetric key in TTP. In this way, they only need to save their own key, 

keys in total.

Alice can encrypt  her message , TTP uses  to decrypt   and uses Bob’s key  to send

 to Bob again. Bob then use his own key to decrypt   and get  .

QUESTION: So, can we do it  without using TTP?

N

O(N )2

O(N)

c = Enc(k  ,m)A k  A c k  B

c =′ Enc(k  ,m)B c′ m



Merkle Puzzles

Suppose we have a symmetric cipher  with .

Alice:

Prepare  puzzles, for , choose rand.  and .

Set  .

Send  to Bob.

Bob:

Choose a random puzzle  to solve it  and obtain .

Send  to Alice.

Complexity:

Alice:  t ime and  space.

Bob:  t ime.

Eve:  t ime.

E(k,m) k ∈ {0, 1}128

232 i = 1, 2, ⋯ , 232 P  ∈i {0, 1}32 (x  , k  ) ∈i i {0, 1}128

puzzle  =i E(0 ∣∣P  ,  "Puzzle #x  " ∣∣k  )96
i i i

{puzzle  }  i 1,2,⋯ ,232

puzzle  j (x  , k  )j j

x  j

O(n) O(n)

O(n)
O(n )2



Dif�e-Hellman Key Exchange (DHKE)

However, the ef�ciency of merkle puzzles is too low, so we have Dif�e-Hellman key exchange.

SETUP(): a large prime  (e.g. 600 digits), an integers  (usually primit ive root ).

Alice: choose random  in , send  to Bob.

Bob: choose random  in , send  to Alice.

Alice calculate , Bob calculate , then they can communicate using .

Since , this algorithm is valid.

Since knowing  and  is known to be hard to calculate  (Dlog problem), this algorithm provide

computat ion security when  is large enough.

The known best  algorithm to solve Dlog problem, GNFS, has a complexity , where  is the

digit  number of .

However, this key exchange algorithm only provides eavesdropping security. It  cannot prevent act ive

attacks, such as MitM.

p g

a [1, p − 1] A = ga

b [1, p − 1] B = gb

k  =AB Ba k  =AB Ab k  AB

B =a (g ) =b a g =ab (g ) =a b Ab

ga gb gab

p

O(exp(n ))1/3 n

p



Public Key Encryption

A different  approach for key exchange is public key encrypt ion. Here is the de�nit ion:

DEF: a public-key encrypt ion system is a triple of algs :

 randomized alg. outputs a key pair .

randomized alg. that  takes  and outputs .

 det . alg. that   and outputs  or .

.

QUESTION: Is public key encrypt ion able to solve MitM problem?

QUESTION: What level of security does public key encrypt ion at  least  sat is�y?

semantic security

CPA security

CCA security

ind. CPA security

(G,E,D)

G() : (pk, sk)
E(pk,m) : m ∈ M c ∈ C

D(sk, c) : c ∈ C m ∈ M ⊥

∀m ∈ M,D(sk,E(pk,m)) = m



CCA Security for Public Key Encryption

DEF: E is CCA secure if for all "eff" A: Adv  [A,E] =CCA ∣Pr[EXP(0) = 1] − [Pr[EXP(1) = 1]∣ ≤
negl



Trapdoor Function (TDF)

Next we consider speci�c implementat ions of public key encrypt ion, one of them is using trapdoor funct ion:

DEF: a trapdoor funct ion  is a triple of "eff" algs :

 randomized alg. outputs a key pair .

det. alg. that  de�nes a funct ion .

 de�nes a funct ion  that  inverts .

.

QUESTION:

Can you �nd the major difference from public key encrypt ion?

Can we use TDF directly to build public key encrypt ion?

X → Y (G,F ,F )−1

G() : (pk, sk)
F(pk, ⋅) : X → Y

D(sk, ⋅) : Y → X F(pk, ⋅)

∀x ∈ X ,F (sk,F(pk,x)) =−1 x



RSA Trapdoor Permutation

choose random primes  1024 bits. Set  .

choose integers .

output .

.

The security statement is: for all ef�cient  algs. :

which is supported by the dif�culty of factoring big integers.

By using RSA as a TDF and adding some randomness, we can construct  RSA public key encrypt ion easily.

G() :

p, q N = pq

e, d s.t ed = 1 (mod φ(N))

pk = (N ,E), sk = (N , d)

F(pk,x) : y = xe

D(sk, y) : y =d x =ed x =ed mod φ(N) x =1 x

A

Pr[A(N , e, y) = y ] <1/e negl(N)



RSA Public Key Encryption

 symmetric enc. scheme provide AE,  where K is keyspace of .

choose random primes  1024 bits. Set  .

choose integers .

output .

choose random  in 

, .

output .

output .

(E  ,D  )s s H : Z  →N K (E,D)

G() :
p, q N = pq

e, d s.t ed = 1 (mod φ(N))

pk = (N ,E), sk = (N , d)
F(pk,x) :

x Z  N

y = xe k ← H(x)
y,E  (k,m)s

D(sk, (y, c)) :

D  (H(RSA (y)), c)s
−1



Wiener’s Attack

However, as a TDF, RSA itself isn’t  secure enough, Wiener proves that  if  then RSA is insecure.

Proof:

since , 

As you can see,  is very small, so cont inued fract ion of  gives . Q.E.D.

d ≤ N /30.25

ed = 1 (mod φ(N)) ⇒ ∃k ∈ Z, ed = k ⋅ φ(N) + 1

∣  −
φ(N)
e

 ∣ =
d

k
 ≤

d ⋅ φ(N)
1

 

 N

1

φ(N) = N − p − q + 1 ∣N − φ(N)∣ ≤ p + q ≤ 3  N

d ≤ N /3 ⇒0.25 ∣ −
N

e
 ∣ ≤
d

k
∣  −
N

e
 ∣ +

φ(N)
e

∣  −
φ(N)
e

 ∣ =
d

k
∣  ∣ +

N ⋅ φ(N)
e(φ(N) − N)

∣  −
φ(N)
e

 ∣
d

k

≤  +
N

3  N
 =

N

 N
 <
 N

4
 

2d2

1

∣  −
N
e

 ∣
d
k

 

N
e

 

d
k



Suppose , we can try to write the cont inued fract ion of .

, then .

, then .

, then .

, then .

Then we have  = .

We can have convergents like:

, , , .

And we can try :  sat is�es, we got  , other pairs can’t  be an

integer.

Solve , we got  , and we’ve found factorizat ion of ,

which breaks the whole RSA system.

N = 90581, e = 17993  

N
e

17993 = 0 × 90581 + 17993 q  =0 0
90581 = 5 × 17993 + 616 q  =1 5

17993 = 29 × 616 + 128 q  =2 29

616 = 4 × 128 + 104 q  =3 4

e/N [0, 5, 29, 4, 1, 3, 2, 4, 3]

0  5
1

 =5+  29
1

1
 146

29
 =5+  

29+  4
1

1
1

 ,  ,  ,  ,  ,  589
117

735
146

2794
555

6323
1256

28086
5579

90581
17993

φ(N) =  

k
ed−1 k = 1, d = 5 φ(N) = 89964

x −2 ((N − φ(N)) + 1)x+ N = 0 (239, 379) N



ElGamal Public Key system

Since RSA has some defects, ElGamal, which is based on Dif�e-Hellman Key Exchange, came out  of place.

First , let ’s recap DHKE:

SETUP(): a large prime  (e.g. 600 digits), an integers  (usually primitive root).

Alice: choose random  in , send  to Bob.

Bob: choose random  in , send  to Alice.

Alice calculate , Bob calculate , then they can communicate using .

QUESTION: what will happen if we treat   as ?

Therefore, a basic ElGamal protocol is invented.

SETUP(): a large prime  (e.g. 600 digits), an integers  (usually primit ive root ).

Alice: choose random  in , send  to Bob.

Bob: choose random  in , encrypt   using , send  to Alice.

Alice calculate , decrypt  .

p g

a [1, p − 1] A = ga

b [1, p − 1] B = gb

k  =AB Ba k  =AB Ab k  AB

A pk

p g

a [1, p − 1] A = ga

b [1, p − 1] m k  =AB Ab (B = g ,E  (k  ,m))b
s AB

k  =AB Ba m = D  (k  , c)s AB



And here is a more modern version:

 �nite cyclic group of order , random generator .

, .

 symmetric AE de�ned over .

 a hash funct ion.

.

.

.

.

.

.

G : n g ∈ G

sk = a ←R Z  n pk = (g,h = g )a

(E  ,D  ) :s s (K, M, C)
H : G →2 K

E(pk = (g,h),m) :

b ←R Z  ,u ←n g , v ←b hb

k ← H(u, v), c ← E  (k,m)s

output (u, c)

D(sk = a, (u, c)) :

v = ua

k = H(u, v),m ← D  (k, c)s

output m



ElGamal CCA Security

In previous sect ions, we know basic ElGamal protocol relies on Dlog problem, just  as same as Dif�e-Hellman

key exchange. Since DHKE only provides eavesdropping security, the quest ion is:

QUESTION: Does modern version of ElGamal provide CCA security?

To solve this quest ion, let ’s look at  several security assumptions:

Computat ional DH (CDH): for all "eff" algs. , .

Hash DH (HDH):  as a hash funct ion, .

Interact ive DH (IDH): for all "eff" , .

A Pr[A(g, g , g ) =a b g ] <ab negl

H : G →2 K (g, g , g ,H(g , g )) ≈  

a b b ab
p (g, g , g ,R)a b

A Pr[A outputs g ] <ab negl



In fact , if:

IDH holds in the group ;

 provides AE;

 is a "random oracle".

then ElGamal is  secure.

QUESTION:

Can we prove CCA security based on CDH?

Can we prove CCA security without random oracles?

G

(E  ,D  )s s

H : G →2 K

CCAro



ElGamal Variants

Twin ElGamal:

SETUP(): , output , .

.

.

.

.

.

.

You can observe this algorithm "has a beauty of symmetry".

Another popular variant  is ElGamal on ECC (ECELG), you will learn/have already learnt  in your textbook.

g ∈ G and a  , a  ∈1 2 Z  n pk = (g,h  =1 g ,h  =a  1
2 g )a  2 sk = (a  , a  )1 2

E(pk = (g,h  ,h  ),m)) :1 2 b ← Z  n

k ← H(g ,h  ,h  )b
1
b

2
b

c ← E  (k,m)s

output (g , c)b

D(sk = (a  , a  ), (u, c)) :1 2

k ← H(u,u ,u )a  1 a  2

m ← D  (k, c)s

output m



Public Key Encryption Summary



T HANKS FOR YOUR LIST ENING!


